Location-independent packet routing and secure access in a...

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Having particular address related cryptography

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S168000, C713S152000, C713S152000

Reexamination Certificate

active

06691227

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to computer networks, and more particularly to methods, systems, and computer program instructions for routing packets and providing secure network access for short-range wireless computing devices.
BACKGROUND OF THE INVENTION
In recent years, various short-range wireless network communications technologies, notably IEEE 802.11 and Bluetooth, have emerged to enable portable devices (such as laptops, cellular phones, personal digital assistants or PDAs, etc.) to communicate both with each other and with wide-area networking environments. (IEEE 802.11 is a standard of the Institute for Electrical and Electronics Engineers, which was approved in 1997 for wireless Local Area Network, or LAN, signaling and protocols. 802.11 addresses frequency hopping spread spectrum radio, direct sequence spread spectrum radio, and infrared light transmissions. Bluetooth is a specification for short-range wireless connectivity that is aimed at unifying telecommunications and computing. More information on these specifications can be found on the Internet at www.ieee.org and www.bluetooth.com, respectively.)
The problem of host mobility within this environment is well known in the prior art, and several solutions have been defined to address the problem. Among these are Mobile IP (Internet Protocol), an end-to-end TCP (Transmission Control Protocol) re-mapping approach, and the HAWAII (Handoff-Aware Wireless Access Internet Infrastructure) system. Each of these solutions, along with a brief summary of their limitations or disadvantages in terms of location-independent packet routing and secure access, will now be described.
In the Mobile IP environment, each device is assigned to a static, global IP address. The device is also assigned to a fixed Home Agent (HA) on its home network. When the device roams, the following steps occur: (1) the device locates a Foreign Agent (FA) host on the remote network and establishes communication with it, and provides the FA with the identity of the HA; (2) the FA initiates a handshake with the HA; (3) packets destined for the client are received by the HA, which then tunnels them to the FA, which then forwards them to the device; (4) packets generated by the client are intercepted by the FA, which then tunnels them to the HA, which then forwards them to the intended destination. However, optimizations have been made to Mobile IP to allow the FA to transmit packets directly to the intended destination instead of sending them via the HA.
Mobile IP has a number of disadvantages and limitations, however. The “IP-inside-IP” tunneling requires that additional header material is added to the packet, and it also requires the recalculation of at least a new IP header checksum (for the additional IP header material). These operations require extra memory accesses at the HA and/or FA. On some operating systems, the checksum calculation may not be incremental (and therefore may require accessing every byte in the IP header). On some operating systems, adding header material requires that the entire packet be copied to a new buffer, requiring access to every byte in the packet. Packet tunneling between the HA and FA also increases the packet size. This in turn increases bandwidth consumption and may require additional fragmentation and re-assembly of the original IP packets (essentially introducing new packet loss conditions). Tunneling can therefore cause performance degradation. Furthermore, the tunneling between the HA and FA introduces a routing inefficiency, since all inbound packets must be routed between the two hosts, even when the packet source and destination are physically located on nearby networks.
Mobile IP also places burdens and restrictions on the client device. The client must install additional software to enable discovering the FA. A particular client is limited to communicating with only one FA at a time. This means that there is no provision for dividing the load among multiple FAs. If the FA fails, then all state information about the client is lost, and the client must re-establish all of its network connectivity. Furthermore, all clients must be assigned to a publicly routable (global) IP address. In today's Internet, such addresses are severely limited, so this represents a difficult limitation, particularly for large organizations with many mobile workers.
An end-to-end TCP re-mapping solution proposed by Alex Snoeren and Hari Balakrishnan is detailed in their paper, “An End-to-End Approach to Host Mobility,” Proceedings of MobiCom 2000, August 2000. Recognizing the limitations of Mobile IP, these authors suggest that seamless mobility can be achieved by adding additional mechanisms to TCP, allowing an established connection to be “re-mapped” to a client's new IP address. In this way, as the client roams, it is free to obtain a new IP address and consequently re-map all of its open connections. In this solution, the TCP/IP connection operates directly between the roaming device (with its dynamic IP address) and the server. Whenever the device roams and obtains a new IP address, messages are sent over the TCP/IP link to notify the server that the device's address has changed.
This solution also has a number of drawbacks. It requires changes to the TCP implementations on all clients and servers, which is an unlikely occurrence. Applications that are aware of the device's IP address must be modified to learn about and handle the IP address changes that occur as the device roams. The solution does not work for User Datagram Protocol (UDP)/IP-based communication. Finally, the system relies on Dynamic Domain Name Service (DDNS) to allow remote hosts to learn about the client's current IP address; unfortunately, DDNS is not yet fully deployed.
The HAWAII system is described in an Internet Draft titled “IP micro-mobility support using HAWAII”, R. Ramjee et al., Jul. 7, 2000, which is available on the Internet at http://www.ietf.org. HAWAII is an optimization to Mobile IP to enable a user to roam more effectively within a single administrative domain. When a user roams into an administrative domain, a relationship is established with the local FA, in the normal fashion. Within the administrative domain, roaming is accomplished by dynamically updating routers and host routing tables so that the FA can forward packets to and from the device.
This solution reduces the FA-HA setup and teardown overhead as compared to Mobile IP, because the FA does not change frequently: It remains fixed as long as the user is roaming within the administrative domain supported by the FA. Like Mobile IP, the HAWAII technique can eliminate outbound “triangle” routing for packets sent from the client (though not for packets sent to the client, because the client's public address is routed to the HA through the Internet).
However, the HAWAII technique introduces additional overhead to update routers (which may not be possible or permissible in many administrative domains) It also does not eliminate the computational performance, bandwidth, and reliability problems associated with Mobile IP.
These existing solutions for host mobility are also. severely limited in that they do not provide mechanisms for enforcing policies regarding (1) which users are accessing the wired network through the wireless access environment and (2) which servers those users are communicating with.
Existing security mechanisms fall into two broad categories. The first is link-level encryption, and the second is secure IP tunneling. Each of these techniques will now be described.
Link-level encryption is used to ensure that data is not transmitted in the clear over the wireless network. In the 802.11 environment, WEP (Wireless Equivalent Privacy) is defined to enable encryption between the client and the wireless access point. In typical implementations, a systems administrator defines a key that is provided to all authorized users. Users configure their clients with this key, which is then presented to the access point to prov

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Location-independent packet routing and secure access in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Location-independent packet routing and secure access in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Location-independent packet routing and secure access in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3343856

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.