Lithographic projection apparatus

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Making named article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S321000, C430S322000, C250S492200, C269S021000

Reexamination Certificate

active

06413701

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a lithographic projection apparatus comprising:
a radiation system for supplying a projection beam of radiation;
a mask table provided with a mask holder for holding a mask;
a substrate table provided with a substrate holder for holding a substrate;
a projection system for imaging an irradiated portion of the mask onto a target portion of the substrate,
the substrate holder having a supporting face for supporting a substrate.
2. Discussion of the Related Art
An apparatus of this type can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the mask (reticle) may contain a circuit pattern corresponding to an individual layer of the IC, and this pattern can then be imaged onto a target area (die) on a substrate (silicon wafer) which has been coated with a layer of radiation-sensitive material (resist). In general, a single wafer will contain a whole network of adjacent dies which are successively irradiated through the reticle, one at a time. In one type of lithographic projection apparatus, each die is irradiated by exposing the entire reticle pattern onto the die at once; such an apparatus is commonly referred to as a waferstepper. In an alternative apparatus—which is commonly referred to as a step-and-scan apparatus—each die is irradiated by progressively scanning the reticle pattern under the projection beam in a given reference direction (the “scanning” direction) while synchronously scanning the wafer table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally <1), the speed v at which the wafer table is scanned will be a factor M times that at which the reticle table is scanned. More information with regard to lithographic devices as here described can be gleaned from International Patent Application WO 97/33205.
Up to very recently, apparatus of this type contained a single mask table and a single substrate table. However, machines are now becoming available in which there are at least two independently movable substrate tables; see, for example, the multi-stage apparatus described in International Patent Applications WO 98/28665 and WO 98/40791. The basic operating principle behind such multi-stage apparatus is that, while a first substrate table is underneath the projection system so as to allow exposure of a first substrate located on that table, a second substrate table can run to a loading position, discharge an exposed substrate, pick up a new substrate, perform some initial alignment measurements on the new substrate, and then stand by to transfer this new substrate to the exposure position underneath the projection system as soon as exposure of the first substrate is completed, whence the cycle repeats itself; in this manner, it is possible to achieve a substantially increased machine throughput, which in turn improves the cost of ownership of the machine.
Lithographic apparatus may employ various types of projection radiation, such as ultra-violet light (UV), extreme UV, X-rays, ion beams or electron beams, for example. Depending on the type of radiation used and the particular design requirements of the apparatus, the projection system may be refractive, reflective or catadioptric, for example, and may comprise vitreous components, grazing-incidence mirrors, selective multi-layer coatings, magnetic and/or electrostatic field lenses, etc; for simplicity, such components may loosely referred to in this text, either singly or collectively, as a “lens”. The apparatus may comprise components which are operated in vacuum, and are correspondingly vacuum-compatible. As mentioned in the previous paragraph, the apparatus may have more than one substrate table and/or mask table.
In many applications, the supporting face of the substrate holder comprises an underlying surface which is provided with a matrix arrangement of protrusions, each protrusion having an extremity remote from the underlying surface and being embodied such that these extremities all lie within a single substantially flat plane. Further, the substrate holder generally comprises a vacuum wall that protrudes from the underlying surface, encloses the matrix arrangement, and has a substantially uniform height. The underlying surface inside the wall is typically provided with at least one aperture extending through the substrate holder and through which the area enclosed by the wall can be accessed, so as to allow it to be at least partially evacuated. Such evacuation causes a substrate placed on the supporting surface to be sucked against the protrusions, whereby the substrate can be rigidly held in place.
Due to the highly stringent demands placed on the substrate table with regard to its mechanical and thermal stability, the table is generally made of a ceramic or vitreous material. An example of a suitable material in this context is ZERODUR, which is market by SCHOTT and which is predominantly comprised of a mixture of SiO
2
and Al
2
O
3
, with the additional presence of various other metal oxides.
It is an object of the invention to provide a lithographic projection apparatus having an improved substrate holder.
This and other objects are achieved in an apparatus as specified in the opening paragraph, characterized in that the said supporting face is at least partially coated with a layer of electrically conductive material.
In experiments leading to the invention, the inventors conducted tests using a vitreous substrate holder and a selection of semiconductor wafers as substrates. In many cases, it was found that the wafers had the annoying habit of sticking to the substrate holder, so that they could not readily be removed after relaxation of the wafer-retaining vacuum.
SUMMARY OF THE INVENTION
Forced removal of such wafers from the substrate holder often resulted in damage to the wafer and/or the finely machined supporting face of the substrate holder, which is unacceptable in most applications.
Further analysis showed that this annoying phenomenon was only occurring for so-called backside-polished wafers, i.e. wafers which are polished to optical surface quality on both major surfaces. Initially, it was thought that the sticking might be due to the phenomenon of “Ansprengen” (also called Van der Waals bonding, or atomic bonding), or to the creation of a static vacuum. However, after much additional investigation, it was speculated that what was actually being observed was an electrostatic effect, whereby the wafer and the supporting face were developing opposite electrical charges, and attracting each other via Coulomb forces. In the case of conventional (i.e. “one-sided”) wafers, such Coulomb forces (which decrease rapidly as a function of distance) would be relatively weak, since the natural surface roughness of the wafer's backside would force a relatively significant separation of the wafer and the supporting face. However, in the case of backside-polished wafers, the optical polishing of the wafer's backside allows much more intimate contact between the wafer and the supporting face, and this significantly reduced separation would lead to a greatly increased Coulomb attraction.
To test this idea, the inventors vapor-deposited a thin layer of chromium on the supporting face of the test substrate holder. In subsequent experiments with this Cr-coated substrate holder, the phenomenon of sticking wafers as described above was observed to be completely absent. The inventors thus concluded that the said phenomenon was indeed due to tribo-electrical effects, due for example to minor wafer/holder relative motion during placement of the wafer on the holder. In accordance with the present invention, any charge separation at the interface between the wafer and the supporting surface as a result of such tribo-electrical effects is effectively blocked since the electrically conductive layer keeps the (electrically conductive) wafer backside and the supporting surface at the same electrical potential.
Acc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lithographic projection apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lithographic projection apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lithographic projection apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2915647

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.