Refrigeration – Structural installation – With electrical component cooling
Reexamination Certificate
2000-12-19
2002-05-28
Doerrler, William C. (Department: 3744)
Refrigeration
Structural installation
With electrical component cooling
C165S080400, C361S715000
Reexamination Certificate
active
06393853
ABSTRACT:
FIELD OF THE INVENTION
The invention relates generally to the thermal management for electronics equipment shelf/frame packaging and specifically to an apparatus for liquid cooling of electronic modules.
BACKGROUND OF THE INVENTION
Internet traffic is growing at a rate of approximately 400% per year and it appears that this trend will continue for at least a couple of years. To keep pace with traffic requirements, high speed, high capacity, dense electrical and optical packaging is required.
It is known that high density electronic equipment require intensive cooling during operation. The functional density of a given electronic unit is limited by its ability to dissipate heat from the unit. This is because the connectivity between different modules advocates an increase in density while heat requirements advocates less density. Prior telecom thermal management methods rely on various forms of air circulation through the shelf (natural, forced or forced-enhanced convection). Currently, enhanced air cooling continues to be the most cost-effective method to cool low to medium thermal density electronics. However, cooling technique is reaching its performance limits. This is because of the properties of air, such as its relatively low heat capacity and low conductivity.
Liquid cooling due to a liquid's relatively high heat capacity, has become common in the computer and broadcast industries. The electronic equipment used in these industries, by their inherent design, produce concentrated loads of heat. For example, in computer electronics, a core processor may be surrounded by lower power density hardware whereby the processor produces concentrated heat load. In contrast, the equipment used in the communications industry including the telecommunications and data communications, produce aggregate heat loads whereby cooling must be applied ubiquitously through a large electronics unit.
As the demands on the communications industry grows, so to does the equipment used to meet these demands. And larger electronic units produce greater amounts of heat, requiring more cooling power.
The communications industry further has demands on the serviceability of the equipment. Module extraction due to replacement, repair or regular maintenance is very important in the communications industry. It is highly unacceptable to shut down a unit in order to remove a component for any reason such as repair or replacement. In contrast, the computer industry commonly shuts down servers or other such equipment in order to service components. Due to this fact in the computer industry, cold plates are generally screwed or bolted to the component requiring cooling.
For these and other reasons, until now, it has not been feasible to use liquid cooling means in communications equipment. Therefore there is a need for an apparatus that combines the high heat transfer capabilities of liquid cooling with the ease of module extraction from electronic equipment. There is a further need in the communications industry for providing an electronic equipment shelf that at least partially alleviates the problems associated with current air cooling techniques.
SUMMARY OF THE INVENTION
An apparatus for the liquid cooling of removable electronic modules is disclosed.
According to an embodiment of the invention, there is provided an apparatus for cooling of an electronic module in a shelf unit comprising: at least first and second cold plates, each cold plate comprising an inlet and an outlet for coolant flow, said first and second cold plates adapted to receive the module therebetween; and a mechanism for moving the first and second cold plates towards and away from the module into operating and released positions respectively relative to the module when positioned therebetween such that: (a) when the cold plates have moved toward the module into the operating position, a surface of each said cold plate comes into heat transferring relationship with an associated surface of the module so that, in use, as a coolant flows through each cold plate, heat is transferred from the module to the coolant in each cold plate, and (b) when the first and second cold plates have been moved away from the module into the released position, the module is spaced from the cold plates to enable the module to be readily removed from between the cold plates.
According to an embodiment of the invention, there is provided an electronic shelf unit for mounting a plurality of electronic modules, the shelf unit having mounting means for removably electrically connecting an electronic module, and comprising an associated cooling apparatus for cooling of the electronic module, the cooling apparatus comprising; at least first and second cold plates, each cold plate comprising an inlet and an outlet for coolant flow, said first and second cold plates adapted to receive the module therebetween; and a mechanism for moving the first and second cold plates towards and away from the module into operating and released positions respectively relative to the module when positioned therebetween such that: (a) when the cold plates have moved toward the module into the operating position, a surface of each said cold plate comes into heat transferring relationship with an associated surface of the module so that, in use, as a coolant flows through each cold plate, heat is transferred from the module to the coolant in each cold plate, and (b) when the first and second cold plates have been moved away from the module into the released position, the module is spaced from the cold plates to enable the module to be readily removed from between the cold plates.
According to an embodiment of the invention, there is provided an electronic shelf unit used in the communications industry adapted to be populated with electronic modules, the modules being removably supported by the shelf unit, the shelf unit comprising an apparatus for liquid cooling of an electronic module in a shelf unit comprising: at least first and second cold plates, each cold plate comprising an inlet and an outlet for liquid flow, said first and second cold plates adapted to be positioned on opposing sides of the module, a surface of each said cold plate being in close heat transferring relation to an associated surface of the module; and a biasing mechanism to provide pressure capable of forcing the first and second cold plates towards the module to provide said close heat transferring relation between the plates and the module whereby as a cooling liquid flows from the inlet of each cold plate to the outlet of each cold plate, heat is transferred from the module to the liquid in each cold plate when in use, the mechanism comprising: a tool clamp mounted to one cold plate; and a slide plate positioned along the first and second cold plates and the module, the slide plate being pinned to the first and second cold plates through angled slots, the tool clamp being pivotally attached to the slide plate such that actuation of the tool clamp causes the slide plate to move towards the tool clamp thereby applying pressure forcing the first and second cold plates towards the module.
According to an embodiment of the invention, there is provided an electronic shelf unit used in the communications industry adapted to be populated with electronic modules, the modules being removably supported by the shelf unit, the shelf unit comprising an apparatus for liquid cooling of an electronic module in a shelf unit comprising: at least first and second cold plates, each cold plate comprising an inlet and an outlet for liquid flow, said first and second cold plates adapted to be positioned on opposing sides of the module, a surface of each said cold plate being in close heat transferring relation to an associated surface of the module; and a biasing mechanism to provide pressure capable of forcing the first and second cold plates towards the module to provide said close heat transferring relation between the plates and the module whereby as a cooling liquid flows from the inlet of each cold plate to the outlet of each c
Cross Douglas B.
Leeuwen Paul van
Rajala Howard J.
Roberts Kim
Venus Tim A.
Doerrler William C.
Nortel Networks Limited
LandOfFree
Liquid cooling of removable electronic modules based on low... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Liquid cooling of removable electronic modules based on low..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Liquid cooling of removable electronic modules based on low... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2856303