Light imaging contrast agents

Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing – Diagnostic or test agent produces in vivo fluorescence

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S009100

Reexamination Certificate

active

06540981

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the use of particulate contrast agents in various diagnostic imaging techniques based on light, more particularly to particulate light imaging contrast agents.
BACKGROUND OF THE INVENTION
Contrast agents are employed to effect image enhancement in a variety of fields of diagnostic imaging, the most important of these being X-ray, magnetic resonance imaging (MRI), ultrasound imaging and nuclear medicine. Other medical imaging modalities in development or in clinical use today include magnetic source imaging and applied potential tomography. The history of development of X-ray contrast agents is almost 100 years old.
The X-ray contrast agents in clinical use today include various water-soluble iodinated aromatic compounds comprising three or six iodine atoms per molecule. The compounds can be charged (in the form of a physiologically acceptable salt) or non-ionic. The most popular agents today are non-ionic substances because extensive studies have proven that non-ionic agents are much safer than ionics. This has to do with the osmotic loading of the patient. In addition to water-soluble iodinated agents, barium sulphate is still frequently used for X-ray examination of the gastrointestinal system. Several water-insoluble or particulate agents have been suggested as parenteral X-ray contrast agents, mainly for liver or lymphatic system imaging. Typical particulate X-ray contrast agents for parenteral administration include for example suspensions of solid iodinated particles, suspensions of liposomes containing water-soluble iodinated agents or emulsions of iodinated oils.
The current MRI contrast agents generally comprise paramagnetic substances or substances containing particles (hereinafter “magnetic particles”) exhibiting ferromagnetic, ferrimagnetic or superparamagnetic behaviour. Paramagnetic MRI contrast agents can for example be transition metal chelates and lanthanide chelates like Mn EDTA and Gd DTPA. Today, several gadolinium based agents are in clinical use; including for example Gd DTPA (Magnevist®), Gd DTPA-BMA (Omniscan®), Gd DOTA (Dotarem®) and Gd HPDO3A (Prohance®). Several particulate paramagnetic agents have been suggested for liver MRI diagnosis; for example suspensions of liposomes containing paramagnetic chelates and suspensions of paramagnetic solid particles like for example gadolinium starch microspheres. Magnetic particles proposed for use as MR contrast agents are water-insoluble substances such as Fe
3
O
4
or &dgr;-Fe
2
O
3
optionally provided with a coating or carrier matrix. Such substances are very active MR contrast agents and are administered in the form of a physiologically acceptable suspension.
Contrast agents for ultrasound contrast media generally comprise suspensions of free or encapsulated gas bubbles. The gas can be any acceptable gas for example air, nitrogen or a perfluorocarbon. Typical encapsulation materials are carbohydrate matrices (e.g. Echovist® and Levovist®), proteins (e.g. Albunex®), lipid matrials like phospholipids (gas-containing liposomes) and synthetic polymers.
Markers for diagnostic nuclear medicine like scintigraphy generally comprise radioactive elements like for example technetium (99m) and indium (III), presented in the form of a chelate complex, whilst lymphoscintigraphy is carried out with radiolabelled technetium sulphur colloids and technetium oxide colloids.
The term “light imaging” used here includes a wide area of applications, all of which utilize an illumination source in the UV, visible or IR regions of the electromagnetic spectrum. In light imaging, the light, which is transmitted through, scattered by or reflected (or re-emitted in the case of fluorescence) from the body, is detected and an image is directly or indirectly generated. Light may interact with matter to change its direction of propagation without significantly altering its energy. This process is called elastic scattering. Elastic scattering of light by soft tissues is associated with microscopic variations in the tissue dielectric constant. The probability that light of a given wavelength (&lgr;) will be scattered per unit length of travel in tissue is termed the (linear) scattering coefficient &mgr;
s
. The scattering coefficient of soft tissue in an optical window of approx. 600-1300 nm ranges from 10
1
-10
3
cm
−1
and decreases as 1/&lgr;. In this range &mgr;
s
>>&mgr;
a
(the absorption coefficient) and although &mgr;
s
(and the total attenuation) is very large, forward scattering gives rise to substantial penetration of light into tissue. Ballistic light is light that has travelled through a region of tissue without being scattered. Quasi-ballistic light (“snake” light) is scattered light that has maintained approximately the same direction of travel. The effective penetration depth shows a slow increase or is essentially constant with increasing wavelengths above 630 nm (although a slight dip is observed at the water absorption peak at 975 nm). The scattering coefficient shows only a gradual decrease with increasing wavelength.
Light that is scattered can either be randomly dispersed (isotropic) or can scatter in a particular direction with minimum dispersion (anisotropic) away from the site of scattering. For convenience and mathematical modelling purposes, scattering in tissue is assumed to occur at discrete, independent scattering centers (“particles”). In scattering from such “particles”, the scattering coefficient and the mean cosine of scatter (phase function) depend on the difference in refractive index between the particle and its surrounding medium and on the ratio of particle size to wavelength. Scattering of light by particles that are smaller than the wavelength of the incident light is called Rayleigh scattering. This scattering varies as 1/&lgr;
4
and the scattering is roughly isotropic. Scattering of light by particles comparable to or larger than the wavelength of light is referred to as Mie scattering. This scattering varies as 1/&lgr; and the scattering is anisotropic (forward peaked). In the visible
ear-IR where most measurements have been made, the observed scattering in tissue is consistent with Mie-like scattering by particles of micron scale: e.g. cells and major organelles.
Since the scattering coefficient is so large for light wavelengths in the optical window (600-1300 nm), the average distance travelled by a photon before a scattering event occurs is only 10-100 &mgr;m. This suggests that photons that penetrate any significant distance into tissue encounter multiple scattering events. The ballistic component of light that has travelled several centimeters through tissue is exceedingly small. Multiple scattering in tissue means that the true optical path length is much greater than the physical distance between the light input and output sites. The scattering acts, therefore, to diffuse light in tissue (diffuse-transmission and -reflection). The difficulty that multiple scattering presents to imaging is three-fold: (i) light that has been randomized due to multiple scattering has lost signal information and contributes noise to the image (scattering increases noise); (ii) scattering keeps light within tissue for a greater period of time, increasing the probability for absorption, so less light transmits through tissue for detection (scattering decreases signal); and (iii) the determination of physical properties of tissue (or contrast media) such as concentration that could be obtained from the Beer-Lambert law is complicated since the true optical path length due to scattering is difficult to determine (scattering complicates the quantification of light interactions in tissue). However, although light cannot penetrate more than a few tens of microns in tissue without being scattered, the large value of the mean cosine of scattering indicates that a significant fraction of photons in an incident beam may undergo a large number of scatters without being deviated far from the original optical axis, and as such can contribute in creating

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Light imaging contrast agents does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Light imaging contrast agents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light imaging contrast agents will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042100

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.