Coherent light generators – Particular active media – Semiconductor
Reexamination Certificate
2002-04-16
2004-02-24
Ip, Paul (Department: 2828)
Coherent light generators
Particular active media
Semiconductor
C257S098000
Reexamination Certificate
active
06697403
ABSTRACT:
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of Korean Application No. 01-20494, filed Apr. 17, 2001, and 02-15902, filed on Mar. 23, 2002 in the Korean Industrial Property Office, the disclosures of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a high-efficiency light-emitting device and a light-emitting apparatus using the same.
2. Description of the Related Art
Silicon semiconductor substrates can be used to highly integrate logic devices, operator devices, and drive devices therein with high reliability. Because silicon is cheap, highly integrated circuits can be formed on a silicon substrate at lower cost, compared to using a compound semiconductor. For this reason, silicon has been used as a base material for most integrated circuits.
Based on the advantage of silicon, steady efforts have been made to manufacture a silicon-based light-emitting device so as to implement a low-cost optoelectronic device that can be manufactured by the general process used to form integrated circuits. It has been experimentally confirmed that porous silicon and nano-crystal silicon have the ability to emit light. Accordingly, research on this idea continues to be conducted.
FIG. 1
illustrates a cross-section of a porous silicon region formed in the surface of a bulk monocrystalline silicon and the energy bandgap between the valence band and conduction band in the porous silicon region.
Porous silicon can be attained by anodic electrochemical dissolution on the surface of bulk monocrystalline silicon (Si) in an electrolyte solution containing, for example, a hydrofluoric (HF) acid solution.
While a bulk silicon is subjected to anodic electrochemical dissolution in a HF solution, a porous silicon region
1
having a number of pores
1
a
is formed in the surface of the bulk silicon, as illustrated in FIG.
1
. In the region where the pores
1
a
are formed, more Si—H bonds exist than in a projection region
1
b
, which is not dissolved by hydrofluoric acid. The energy bandgap between the valence band (Ev) and the conduction band (Ec) appears to be inversed with respect to the shape of the porous silicon region
1
.
A recession region in the energy bandgap curve, which is surrounded by projection regions and corresponds to the projection region
1
b
surrounded by the pore region
1
a
in the porous silicon region
1
, provides a quantum confinement effect so that the energy bandgap in this region is increased over that of the bulk silicon. Also, in this region, holes and electrons are trapped, emitting light.
For example, in the porous silicon region
1
, the projection region
1
b
surrounded by the pore region
1
a
is formed as a quantum wire of monocrystalline silicon to provide the quantum confinement effect, and electrons and holes are trapped by the quantum wire and coupled to emit light. The wavelengths of emitted light can range from a near infrared wavelength to a blue wavelength according to the dimension (width and length) of the quantum wire. Here, the period of the pore region
1
a
is, for example, about 5 nm, and the porous silicon region
1
has a maximum thickness of, for example, 3 nm, as illustrated in FIG.
1
.
Therefore, after manufacturing a porous silicon-based light-emitting device, as a predetermined voltage is applied to the light-emitting device where the porous silicon region
1
is formed, a desired wavelength of light can be emitted depending on the porosity of the porous silicon region
1
.
However, such a porous silicon-based light-emitting device as described above is not highly reliable yet as a light-emitting device and has an external quantum efficiency (EQE) as low as 0.1%.
FIG. 2
is a sectional view of an example of a nano-crystal silicon-based light-emitting device. Referring to
FIG. 2
, the nano-crystal silicon-based light-emitting device has a layered structure including a p-type monocrystalline silicon substrate
2
, an amorphous silicon layer
3
formed on the silicon substrate
2
, an insulating layer
5
formed on the amorphous silicon layer
3
, and lower and upper electrodes
6
and
7
formed on the bottom of the silicon substrate
2
and the top of the insulating layer
5
, respectively. A nano-crystal silicon
4
is formed as a quantum dot in the amorphous silicon layer
3
.
The nano-crystal silicon
4
is formed in a quantum dot form as the amorphous silicon layer
3
is rapidly heated to 700° C. in an oxygen atmosphere for recrystallization. Here, the amorphous silicon layer
3
has a thickness of 3 nm, and the nano-crystal silicon
4
has a size of about 2-3 nm.
In the light-emitting device using the nano-crystal silicon
4
described above, as a reverse bias voltage is applied across the upper and lower electrodes
7
and
6
, an intensive electric field is generated at the ends of the amorphous silicon layer
3
between the silicon substrate
2
and the nano-crystal silicon
4
so that electrons and holes excited to a high-energy level are generated. The electrons and holes are tunneled into the nano-crystal silicon
4
and couple to each other therein to emit light. In the nano-crystal silicon-based light-emitting device, the wavelength of light generated therefrom becomes shorter as the size of the nano-crystal silicon quantum dot decreases.
In the light-emitting device using the nano-crystal silicon
4
described above, it is difficult to control the size and uniformity of the nano-crystal silicon quantum dot, and efficiency is very low.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a light-emitting device and light-emitting apparatus using the same, the light-emitting device having a higher efficiency than light-emitting devices formed using porous silicon and nano-crystal silicon and an improved selectivity of wavelength of emitted light.
Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
The foregoing and other objects of the present invention are achieved by providing a light-emitting device comprising: an n-type or p-type substrate; a doped region formed on a first surface of the substrate with a predetermined dopant to be an opposite type from that of the substrate, to an ultra-shallow depth such that light is emitted from a p-n junction between the doped region and the substrate by a quantum confinement effect; a resonator which improves the selectivity of wavelength of the light emitted from the p-n junction; and first and second electrodes formed on the first surface and a second surface of the substrate, respectively, to inject holes and electrons.
In an embodiment of the present invention the resonator comprises: a first reflective layer formed on the second surface of the substrate; and a second reflective layer formed on the doped region and together with the first reflective layer improves the selectivity of the wavelength of light being emitted, wherein one of the first and second reflective layers is formed with a lower reflectivity than the other so that the light externally emits through the first or second reflective layer having the lower reflectivity. Preferably, the second reflective layer is a distributed Bragg reflector (DBR) formed by alternating material layers having different refractive indices. The first reflective layer may be formed on the second surface of the substrate, and the first electrode may be formed on the second surface of the substrate surrounding the first reflective layer. Alternatively, the first electrode can be formed of a transparent electrode between the second surface of the substrate and the first reflective layer.
In an aspect of the present invention, the light-emitting device further comprises a control layer on one surface of the substrate to act as a mask in forming the doped region and to limit the depth of the doped region to be ultra-shallow.
In an aspect of
Choi Byoung-lyong
Lee Eun-kyung
You Jae-ho
Ip Paul
Nguyen Phillip
Samsung Electronics Co,. Ltd.
Staas & Halsey , LLP
LandOfFree
Light-emitting device and light-emitting apparatus using the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Light-emitting device and light-emitting apparatus using the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Light-emitting device and light-emitting apparatus using the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3325089