Lead frame, manufacturing method of a lead frame,...

Active solid-state devices (e.g. – transistors – solid-state diode – Lead frame – With bumps on ends of lead fingers to connect to semiconductor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S676000, C257S692000, C257S735000, C257S737000, C257S769000, C438S123000, C438S611000, C438S613000

Reexamination Certificate

active

06563202

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a lead frame, particularly a lead frame which uses, as a base material, a base having a metal such as a copper-type metal as the main component and which has bumps made of a metal on the surfaces of inner lead tip portions. The invention also relates to a manufacturing method of such a lead frame, a semiconductor device using such a lead frame, an assembling method of the semiconductor device, and an electronic apparatus using the semiconductor device.
Lead frames are indispensable for the techniques of forming leads of respective electrodes of a semiconductor chip, and commonly used in mounting semiconductor chips. Lead frames are generally made of a copper-type material, and bumps are formed on the surfaces of respective inner lead tip portions so as to be bonded to respective electrode pads on a semiconductor chip. Although previously such bumps were using aluminum, in recent years techniques of forming bumps using gold have been developed. The reasons for forming bumps made of gold are that good bonding performance is obtained and that gang bonding is enabled which provides high production efficiency than single point bonding.
In particular, the fact that gang bonding is enabled is very important for the following reason. Electrode pads of a semiconductor chip are made of aluminum. According to the current technology, single point bonding should be used to bond leads of the previous type having aluminum bumps to such aluminum pads. Where bumps are made of gold, gang bonding can be performed and hence the bonding efficiency can greatly be increased.
FIG. 1
illustrates bonding in a case where bumps are made of gold. Respective inner leads made of copper, for instance, have bumps (having a three-layer structure of gold, tin, and aluminum that are provided in this order from the surface) at the tip portions. The bumps are positioned above respective electrode pads (having a three-layer structure of gold, tin, and aluminum that are provided in this order from the surface) of a semiconductor chip and then bonded thereto by ultrasonic bonding by using a bonding tool.
The conventional techniques of forming bumps made of gold will be described below. In a first technique, the bump-forming side of each inner lead made of copper or the like is selectively half-etched so that a bump-forming portion is protruded. Then, the entire lead surface is plated with gold (a nickel plating layer is formed as an undercoat). In a second technique, gold to constitute a bump is transferred to each inner lead surface by a transfer method. In a third method, gold is evaporated on a bump-forming portion of each inner lead. In a fourth method, the entire surface of each inner lead is plated with a gold film with a nickel plating layer formed as an undercoat.
Each of the above conventional techniques of forming bumps made of gold which provide good bonding performance and enable gang bonding has the following problems. The first technique, in which the bump-forming side of each inner lead is selectively half-etched so that a bump-forming portion is protruded and then the entire lead surface is plated with gold, has a problem that because copper that constitutes leads is hard, electrode pads of an IC chip are prone to cracking. Since a nickel plating layer needs to be formed as an undercoat of a gold plating layer, the number of steps is increased. Further, where gold is formed on the entire lead surface, a large amount of gold is used, to increase the material cost, that is, the overall cost.
The second technique, in which gold to constitute a bump is transferred to each inner lead surface by a transfer method, has a problem that it is prone to positional deviations because of low accuracy of the transfer position control.
The third technique, in which gold is evaporated on a bump-forming portion of each inner lead, has problems that it requires a large investment in equipment because evaporation equipment is expensive, that the productivity is low because gold evaporation takes long time, and that the adhesion between a gold evaporation film and a copper lead is insufficient.
In the fourth technique, in which the entire surface of each inner lead is plated with a gold film with a nickel plating layer formed as an undercoat, has a problem that the number of steps is increased because the nickel plating layer needs to be formed as the undercoat of the gold plating layer. Further, where gold is formed on the entire lead surface, a large amount of gold is used, to increase the material cost. In particular, the gold plating film needs to be formed so as to be thick enough to secure good bonding performance. Forming so thick a gold plating film consumes a very large amount of gold, to cause a non-negligible cost increase.
SUMMARY OF THE INVENTION
The present invention has been made to solve the above problems in the art, and an object of the invention is therefore to improve the positional accuracy of bump forming positions, enable bumps to be formed even when the inner lead pitch is made finer, form in a relatively short time bumps that are thick enough to secure good bonding performance without using evaporation that is low in productivity and requires a high equipment cost, provides sufficient adhesion between bumps and inner leads, improve the bonding performance while preventing an undue increase in material cost by avoiding useless consumption of a metal, enables gang bonding, and reduce the cost of a metal material of bumps in manufacture of a lead frame which uses, for instance, a metal base as a base material and has bumps made of a metal on the surfaces of inner lead tip portions.
The invention provides a first manufacturing method of a lead frame, comprising the steps of forming metal films to constitute bumps by plating on a base made of a metal; and forming, by plating with a metal, a circuit wiring including inner leads so that the inner leads are connected to the respective metal films.
This manufacturing method of a lead frame can increase the adhesion to the underlying member because of the use of plating rather than evaporation, and can shorten the time required for forming metal films of a necessary thickness because of their high growth rate. Further, the investment in equipment can be reduced because the cost of equipment for plating is lower than that for evaporation.
Since metal films to constitute bumps are formed by plating on a highly rigid base that has not been formed with inner leads yet, the underlying member (base member) is more stable than in a case of forming metal films on the tip portions of the surfaces of inner leads already formed.
Therefore, the bumps are easy to form and the accuracy of their forming positions can be increased.
The metal films may be formed by forming, on the base, a resist film having a negative pattern of a pattern of the intended circuit wiring, and performing the plating in a state that tip portions of the respective inner leads are masked by a mask jig so as to be prevented from being plated. In this case, by securing a proper positional relationship between the resist film and the mask jig, the metal films to constitute bumps can easily be formed with a correct positional relationship with inner leads to be formed next so as to be connected to the metal films.
Further, the circuit wiring including the inner leads may be formed thereafter by performing plating by using only the resist film as a mask in a state that the mask jig is removed. In this case, a desired positional relationship between the bumps and the circuit wiring can be established with high accuracy.
The invention also provides a second manufacturing method of a lead frame, comprising the steps of forming metal firms to constitute bumps by plating on a base having, on a surface thereof, an etching stop layer; forming, by plating with a metal, a circuit wiring including inner leads so that the inner leads are connected to the respective metal films; forming, so as to cover the circuit wiring, an insulating film having ope

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lead frame, manufacturing method of a lead frame,... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lead frame, manufacturing method of a lead frame,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lead frame, manufacturing method of a lead frame,... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3054420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.