Layered fiber structure in paper products

Paper making and fiber liberation – Apparatus – Running or indefinite length product forming and/or treating...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0


C162S343000, C162S339000, C366S336000

Reexamination Certificate




1. Field of the Invention
The inventions relate generally to increased productivity and formation quality in paper forming machine headbox components by hydrodynamic optimization of paper and board forming. More particularly, the inventions relate to the generation of microturbulence and CD shear in jets of paper fiber stock. The generated flow field may be provided as one or more counter-rotating vortex pairs (CVP) within diffuser tubes. Axial vorticity may further prevent fiber orientation in the machine direction in the initial converging section of the channel for discharging paper fiber stock upon a wire component. Layered fiber structures are also considered desirable in the paper product.
2. Background and Description of Related Art
The quality of paper and the board forming, in manufacture, depends significantly upon the uniformity of the rectangular jet generated by a paper forming machine headbox component for discharging paper fiber stock upon the wire component of the paper forming machine. Attempts to establish uniform paper stock flow in the headbox component, particularly the nozzle chamber, and to improve-paper fiber orientation at the slice output of the headbox have involved using a diffuser installed between the headbox distributor (inlet) and the headbox nozzle chamber (outlet). The diffuser block enhances the supply of a uniform flow of paper stock across the width of the headbox in the machine direction (MD). Such a diffuser box typically includes multiple conduits or tubular elements between the distributor and the nozzle chamber which may include step widening or abrupt opening changes to create turbulent flows for deflocculation or disintegration of the paper fiber stock to ensure better consistency of the stock. High quality typically means good formation, uniform basis weight profiles, uniform sheet structure and high sheet strength properties. These parameters are affected to various degrees by paper fiber distributions, fiber orientations, fiber density and the distributions of fines and fillers. Optimum fiber orientations in the XY plane of the paper and board webs which influences MD/CD elastic stiffness ratios across the width is of significant importance in converting operations and end uses for certain paper grades.
Conventional paper forming apparatus used primarily in the paper and board industry consists of a unit which is used to transform paper fiber stock, a dilute pulp slurry (i.e., fiber suspended in water at about 0.5 to 1 percent by weight) into a rectangular jet and to deliver this jet on top of a moving screen (referred to as wire in the paper industry). The liquid drains or is sucked under pressure through the screen as it moves forward leaving a mat of web fiber (e.g., about 5 to 7 percent concentration by weight). The wet mat of fiber is transferred onto a rotating roll, referred to as a couch roll, transporting the mat into the press section for additional dewatering and drying processes.
The device which forms the rectangular jet is referred to as a headbox. These devices are anywhere from 1 to 9 meters wide depending on the width of the paper machine. There are different types of headboxes used in the industry. However, there are some features that are common among all of these devices. The pulp slurry (referred to as stock) is transferred through a pipe into a tapered section, the manifold, where the flow is almost uniformly distributed through the width of the box. The pipe enters the manifold from the side and therefore, there must be a mechanism to redirect the flow in the machine direction. This is done by a series of circular tubes which are placed in front of the manifold before the converging zone or nozzle chamber of the headbox. This section is referred to as the tube bundle, the tube bank or the diffuser block of the headbox. These tubes are either aligned on top of each other or are placed in a staggered pattern. There are anywhere from a few hundred to several thousand tubes in a headbox.
The tubes in current headboxes have a smooth surface starting from a circular shape in the manifold side and going through one or two step changes to larger diameter circular sections. Some tubes converge into a rectangular outlet (some with rounded edges) at the other end opening to the converging zone of the headbox. Analysis shows that the flow entering the tube may start to recirculate generating vorticity in the machine direction. The sign of the vorticity vector depends on the location of the tube. Very often, there is a pattern that develops as a natural outcome of the tube pattern structure and the structure of the headbox. In current machines, there is no control on the direction or strength of the vortices in the tubes. The tubes all have flat smooth internal surface and the flow pattern and secondary flow inside the tubes is governed by the inlet and outlet conditions. The machine direction vorticity could be positive or negative depending on the inlet and outlet conditions which in turn depend on the location of the tube in the tube bank.
The present invention relates to a concept and method of generating one or more counter-rotating vortex pairs (CVP) inside each tube. The counter-rotating vortices inside the tubes result in more effective interaction of the jets once leaving the tubes. Advantageously the generation of small scale turbulent flows with the defined vortices of the jets avoids large scale hydrodynamic problems of secondary flows, flow instabilities, boundary-layer separation and other hydrodynamically-induced non-uniformities in the forming section nozzle chamber of the paper forming machine headbox component, avoiding the problems of: twist/warp in board grades; non-uniform basis-weight; non-uniform fiber orientation; non-uniform moisture profile; cockling and diagonal curl in printing paper; and streaking (jagged) dry line on the forming table or wire component. Layered structures are facilitated by combining divider sheets employed with jet flow exhibiting axial vorticity in the tubes to produce cross-machine (CD) shear in various layers of the forming jet.
A novel concept is described to control the formation of secondary flow in the tubes in order to achieve a superior flow field inside the converging zone of the headbox. Any mechanism used to control or enhance the secondary flow inside the tubes and in the tube bank region to achieve a certain flow property in the converging zone of the headbox is part of this concept. Thus, the concept relates to the modification of the flow inside the tube bank by altering the internal surface geometry of current tubes or tube inserts. The internal surfaces of all of the current tubes or tube inserts are either circular and therefore axisymmetric (type I), or, they start from a circular inlet and eventually converge into a rectangular outlet (type II) with a four fold symmetry (i.e., the entire tube can be divided into symmetric regions by two diagonal cross-sectional planes, one vertical cross-sectional plane and one horizontal cross-sectional plane. The new concept is to modify the geometry of the type I and/or inserts such that the internal surface is no longer axisymmetric or non-axisymmetric, and to modify the internal geometry of the type II tubes such that the internal geometry of the tube or the insert is no longer four fold symmetric. One described embodiment modifies the internal geometry of each tube in order to generate machine-direction (MD) vorticity and subsequently to arrange the tube or the insert in such a manner so that all the jets in each row of the tube bundle form with the same sign of MD vorticity vector and the jets in each column form with alternating sign of the MD vorticity. This generates shear layers which would result in cross-machine orientation of fibers and therefore would increase the strength and other physical properties in the CD while providing effective mixing and turbulent generation between tubes adjacent to each other in each row.
Another described embodiment modif


Say what you really think

Search for the USA inventors and patents. Rate them and share your experience with other people.


Layered fiber structure in paper products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Layered fiber structure in paper products, we encourage you to share that experience with our community. Your opinion is very important and Layered fiber structure in paper products will most certainly appreciate the feedback.

Rate now


Profile ID: LFUS-PAI-O-3093812

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.