Active solid-state devices (e.g. – transistors – solid-state diode – Specified wide band gap semiconductor material other than... – Diamond or silicon carbide
Reexamination Certificate
1998-08-28
2001-06-12
Loke, Steven (Department: 2811)
Active solid-state devices (e.g., transistors, solid-state diode
Specified wide band gap semiconductor material other than...
Diamond or silicon carbide
C257S410000, C257S411000, C257S640000, C257S641000, C257S649000, C257S506000
Reexamination Certificate
active
06246076
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to high power, high field, or high temperature silicon carbide devices and in particular relates to insulated gate field effect transistors, device passivation, and field insulation. This invention was developed under Army Research Laboratories contract number DAAL01-98-C-0018. The government may have certain rights in this invention.
BACKGROUND OF THE INVENTION
The present invention relates to silicon carbide devices particularly insulated gate devices and devices that incorporate device passivation, edge termination, or field insulation, and that are formed in silicon carbide because of silicon carbide's advantageous physical and electronic characteristics.
For electronic devices, particularly power devices, silicon carbide offers a number of physical, chemical and electronic advantages. Physically, the material is very hard and has an extremely high melting point, giving it robust physical characteristics. Chemically, silicon carbide is highly resistant to chemical attack and thus offers chemical stability as well as thermal stability. Perhaps most importantly, however, silicon carbide has excellent electronic properties, including high breakdown field, a relatively wide band gap (about 2.9 eV at room temperature for the 6H polytype), high saturated electron drift velocity, giving it significant advantages with respect to high power operation, high temperature operation, radiation hardness, and absorption and emission of high energy photons in the blue, violet, and ultraviolet regions of the spectrum.
Accordingly, interest in silicon carbide devices has increased rapidly and power devices are one particular area of interest. As used herein, a “power” device is one that is designed and intended for power switching and control or for handling high voltages and large currents, or both. Although terms such as “high field” and “high temperature” are relative in nature and often used in somewhat arbitrary fashion, “high field” devices are generally intended to operate in fields of 1 or more megavolts per centimeter, and “high temperature” devices generally refer to those operable above the operating temperatures of silicon devices; i.e., at least 200° C. and preferably 250-400° C., or even higher. For power devices, the main concerns include the absolute values of power that the device can (or must) handle, and the limitations on the device's operation that are imposed by the characteristics and reliability of the materials used.
Silicon carbide-based insulated gate devices, particularly oxide-gated devices such as MOSFETs, must, of course, include an insulating material in order to operate as IGFETs. Similarly, MIS capacitors require insulators. By incorporating the insulating material, however, some of the physical and operating characteristics of the device become limited by the characteristics of the insulator rather than by those of silicon carbide. In particular, in silicon carbide MOSFETs and related devices, silicon dioxide (SiO
2
) provides an excellent insulator with a wide band gap and a favorable interface between the oxide and the silicon carbide semiconductor material. Thus, silicon dioxide is favored as the insulating material in a silicon carbide IGFET. Nevertheless, at high temperatures or high fields or both, at which the silicon carbide could otherwise operate satisfactorily, the silicon dioxide tends to electrically break down; i.e., to develop defects, including traps that can create a current path from the gate metal to the silicon carbide. Stated differently, silicon dioxide becomes unreliable under the application of high electric fields or high temperatures (250-400° C.) that are applied for relatively long time periods; i.e., years and years. It will be understood, of course, that a reliable semiconductor device should have a statistical probability of operating successfully for tens of thousands of hours.
Additionally, those familiar with the characteristics of semiconductors and the operation of semiconductor devices will recognize that passivation also represents a challenge for structures other than insulated gates. For example, junctions in devices such as mesa and planar diodes (or the Schottky contact in a metal-semiconductor FET) produce high fields that are typically passivated by an oxide layer, even if otherwise non-gated. Such an oxide layer can suffer all of the disadvantages noted above under high field or high temperature operation.
Accordingly, IGFET devices formed in silicon carbide using silicon dioxide as the insulator tend to fall short of the theoretical capacity of the silicon carbide because of the leakage and the potential electrical breakdown of the silicon dioxide portions of the device.
Although other candidate materials are available for the insulator portion of silicon carbide IGFETs, they tend to have their own disadvantages. For example, high dielectrics such as barium strontium titanate or titanium dioxide have dielectric constants that drop dramatically when a field is applied. Other materials have poor quality crystal interfaces with silicon carbide and thus create as many problems (e.g., traps and leakage current) as might solved by their high dielectric constant. Others such as tantalum pentoxide (Ta
2
O
5
) and titanium dioxide (TiO
2
) tend to exhibit an undesired amount of leakage current at higher temperatures. Thus, simply substituting other dielectrics for silicon dioxide presents an entirely new range of problems and disadvantages in their own right.
Recent attempts to address the problem have included the techniques described in U.S. Pat. No. 5,763,905 to Harris, “Semiconductor Device Having a Passivation Layer.” Harris '905 appears to be somewhat predictive, however, and fails to report any device results based on the disclosed structures.
Therefore, the need exists for a dielectric composition or structure that can reliably withstand high electric fields while minimizing or eliminating current leakage, and while operating at high temperatures in order to take full advantage of silicon carbide's electrical characteristics.
OBJECT AND SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide dielectric structures for silicon carbide-based IGFETs that can take advantage of the power handling capabilities of silicon carbide.
The invention meets this object with a dielectric structure for silicon carbide devices that comprises a layer (or device) of silicon carbide, a layer of silicon dioxide on the silicon carbide layer, a layer of another insulating material on the silicon dioxide layer, with the insulating material having a dielectric constant higher than the dielectric constant of silicon dioxide, and a gate contact (for gated devices) to the insulating material. In preferred embodiments the dielectric structure includes a capping layer of SiO
2
between the high dielectric and the gate.
In another aspect, the invention provides insulated gate devices such as MISFETs that incorporate the inventive dielectric structure as the gate insulator.
In another aspect, the invention provides passivation, edge termination, or field insulation for silicon carbide devices.
In another aspect, the invention provides a high power semiconductor device for which the active portions are formed of silicon carbide, and that include passivation portions that experience high fields under an applied potential. These passivation portions are in turn formed of a layer of silicon dioxide on a portion of the silicon carbide, a layer of another insulating material on the silicon dioxide that has a dielectric constant higher than the dielectric constant of silicon dioxide, and a capping layer of silicon dioxide on the high dielectric layer.
The foregoing and other objects and advantages of the invention and the manner in which the same are accomplished will become clearer based on the following detailed description taken in conjunction with the accompanying drawings in which:
REFERENCES:
patent: 3924024 (1975-12-01), Naber et al.
paten
Lipkin Lori A.
Palmour John Williams
Cree Inc.
Loke Steven
Philip Summa, P.A.
LandOfFree
Layered dielectric on silicon carbide semiconductor structures does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Layered dielectric on silicon carbide semiconductor structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Layered dielectric on silicon carbide semiconductor structures will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2515841