Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making
Reexamination Certificate
2001-08-03
2004-06-29
Hamilton, Cynthia (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Imaging affecting physical property of radiation sensitive...
Radiation sensitive composition or product or process of making
C430S944000, C430S945000, C430S306000
Reexamination Certificate
active
06756181
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to printing plates which can be made without using a negative. More specifically, it relates to a laser-imageable printing plate. Such plates are particularly useful for flexographic printing, but can be used for offset and lithographic printing.
BACKGROUND OF THE INVENTION
Flexography is a method of printing that is commonly used for high-volume runs. Flexography is employed for printing on a variety of substrates such as paper, paperboard stock, corrugated board, films, foils and laminates. Newspapers and grocery bags are prominent examples. Coarse surfaces and stretch films can be economically printed only by means of flexography. Flexographic printing plates are relief plates with image elements raised above open areas. One type of flexographic printing plate resembles a transparent or translucent plastic doormat when it is ready for use. The plate is somewhat soft, and flexible enough to wrap around a printing cylinder, and durable enough to print over a million copies.
Such plates offer a number of advantages to the printer, based chiefly on their durability and the ease with which they can be made. Further improvements, to the degree of resolution (fineness of detail) which can be obtained as well as reductions in cost, would expand the usefulness of these plates. The present invention allows both increased resolution by use of laser processing, and reductions in cost through the elimination of the use of a negative to make the printing plate.
A typical flexographic printing plate as delivered by its manufacturer is a multilayered article made of, in order, a backing, or support layer; one or more unexposed photocurable layers; a protective layer or slip film; and a cover sheet. The backing layer lends support to the plate. It is typically a plastic film or sheet about 5 mils or so thick, which may be transparent or opaque. Polyester films, such as polyethylene terephthalate film, are examples of materials that can be suitably used as the backing. When only a single photocurable layer is present, it may be anywhere from about 25-275 mils thick, and can be formulated from any of a wide variety of known photopolymers, initiators, reactive diluents, fillers, etc. In some plates, there is a second photocurable layer (referred to as an “overcoat” or “printing” layer) atop this first, base layer of photocurable material. This second layer usually has a similar composition to the first layer, but is generally much thinner, being on the order of less than 10 mils thick. The slip film is a thin (about 0.1-1.0 mils) sheet which is transparent to UV light that protects the photopolymer from dust and increases its ease of handling. The cover sheet is a heavy, protective layer, typically polyester, plastic or paper.
In normal use, the printer will peel the cover sheet off the printing plate, and place a negative on top of the slip film. The plate and negative will then be subjected to flood-exposure by UV light through the negative. The areas exposed to the light cure, or harden, and the unexposed areas are removed (developed). Typical methods of development include washing with various solvents or water, often with a brush. Other possibilities for development include use of an air knife or heat plus a blotter.
Exposure of the printing plate is usually carried out by application of a vacuum to ensure good contact between the negative and the plate. Any air gap will cause deterioration of the image. Similarly, any foreign material, such as dirt and dust between the negative and the plate results in loss of image quality.
Even though the slip films are thin and made from transparent materials, they still cause some light scattering and can somewhat limit the resolution which can be obtained from a given image. If the slip film were eliminated, finer and more intricate images could be obtained.
Finer resolution would be particularly desirable for the reproduction of elaborate writing as in the case of Japanese characters, and for photographic images.
A negative can be a costly expense item. For one thing, any negative which is used for printing must be perfect. Any minor flaw will be carried through onto each printed item. As a consequence, effort must be expended to ensure that the negative is precisely made. In addition, the negative is usually made with silver halide compounds which are costly and which are also the source of environmental concerns upon disposal.
Given these considerations, it is clear that any process which would eliminate the use of the negative, or reduce the light scattering effects and other exposure limitations of the slip films, would yield significant advantages in terms of cost, environmental impact, convenience, and image quality over the present methods.
The inventors have found a way to obtain these advantages by using a laser that is guided by an image stored in an electronic data file to create an in situ negative on a modified slip film, and then exposing and developing the printing plate in the usual manner. As a result, the printer need not rely on the use of negatives and all their supporting equipment, and can rely instead on a scanned and stored image. Such images can be readily altered for different purposes, thus adding to the printer's convenience and flexibility. In addition, this method is compatible with the current developing and printing equipment, so expensive alterations to the other equipment are not required.
Laser engraving of various materials, such as wood and metal, is well known. Laser engraving of cured hard rubber or lithographic plates is also known. If this procedure were applied to a flexographic printing plate, the plate would first be exposed to UV light without an image. Then the laser would be used to engrave an image on the hardened plate. This has been attempted, but found to be too slow to be commercially competitive. Flexographic printing plates require a high relief (generally, 30-40 mil high letters) which take a long time to engrave.
Direct exposure of a photopolymer using a laser is also known. This procedure uses a precisely guided laser to replace the UV flood lamps which are normally used to expose the plate. U.S. Pat. No. 4,248,959, issued to Jeffers et al. Feb. 3, 1981, relates to the direct exposure of a photosensitive polymer plate using a laser guided by a computer-generated image. The disclosed method is not suitable for the development of flexographic printing plates, again because the thickness of the plate hampers the cure. Again, the process is too slow to be commercially competitive.
Other efforts have focussed on generating an image directly in contact with a photocurable layer. U.S. Pat. No. 5,015,553 issued to Grandmont et al. May 14, 1991 relates to a method of making a UV photoresist for a printed circuit board, using a computer-assisted design (CAD) driven photoplotter which selectively exposes a photographic imaging layer without affecting the underlying UV sensitive photoresist. The image layer is then chemically developed on the board and used as an situ mask for the underlying UV resist during exposure to UV light. After the exposure, the image layer is peeled off to allow conventional processing of the resist. The process requires at least two development steps for the entire plate, and also requires the use of a peelable cover sheet interposed between the image layer and the photocurable layer.
Laser ablation of polymers from relatively insensitive substrates is known. U.S. Pat. No. 4,020,762 issued to Peterson May 3, 1977 relates to a method of making a sensitized aluminum printing plate for offset lithography. An aluminum sheet was coated with a mixture of finely divided carbon, nitrocellulose, a non-oxidizing alkyd resin, a diazo sensitizer, cellulose acetate, butylacetate, xylene and ethyl cellosolve. The coating was at least partially etched with a YAG laser. It is not clear whether all the coating was removed from the aluminum substrate although the text alludes to this result. The patentee discloses that the etched areas became s
Kanga Rustom Sam
Yang Michael Wen-Chein
Carmody & Torrance LLP
Hamilton Cynthia
Polyfibron Technologies, Inc.
LandOfFree
Laser imaged printing plates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Laser imaged printing plates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser imaged printing plates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3310915