Laser assisted drug delivery

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S021000, C604S063000

Reexamination Certificate

active

06706011

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally apparatus and methods for delivering predetermined formulations and amounts of drugs or other materials to portions of the body with the aid of laser energy. More particularly, the invention relates to apparatus and methods for delivering predetermined formulations and amounts of drugs, medications or other materials to selected portions of tissue in conjunction with surgical and/or percutaneous procedures such as laser-assisted transmyocardial revascularization (TMR) procedures.
BACKGROUND OF THE INVENTION
In the treatment of heart disease, one method of improving myocardial blood supply is called transmyocardial revascularization (TMR), the creation of channels in the myocardium of the heart. The procedure using needles in a form of surgical “myocardial acupuncture” has been used clinically since the 1960s. Deckelbaum. L. P., Cardiovascular Applications of Laser technology,
Lasers in Surgery and Medicine
15:315-341 (1994). It is believed that the technique relieves ischemia by allowing blood to pass from the ventricle through the channels either directly into other vessels communicating with the channels or into myocardial sinusoids which connect to the myocardial microcirculation.
Numerous surgical TMR studies have been performed, including early studies using needles to perform myocardial acupuncture, or boring, to mechanically displace and/or remove tissue. Such studies have involved surgically exposing the heart and sequentially inserting needles to form a number of channels through the epicardium, myocardium, and endocardium to allow blood from the ventricle to perfuse the channels. The early studies using needles showed that the newly created channels were subject to acute thrombosis followed by organization and fibrosis of clots resulting in channel closure. Interest in TMR using needles waned with the knowledge that such channels did not remain open. However, interest in TMR procedures has recurred with the advent of medical lasers used to create TMR channels. Histological evidence of patent, endothelium-lined tracts within laser-created channels shows that the lumen of laser channels can become hemocompatible and remain patent. A thin zone of charring occurs on the periphery of the laser-created channels through the well-known thermal effects of optical radiation on cardiovascular tissue. Additionally, recent histological evidence shows probable new vessel formation adjacent collagen occluded transmyocardial channels, thereby suggesting benefits from TMR with or without the formation of channels which remain patent.
Surgical TMR procedures using laser energy have been described in the prior art. U.S. Pat. No. 4,658,817 issued Apr. 21, 1987 to Hardy teaches a method and apparatus for surgical TMR using a CO
2
laser connected to an articulated arm having a handpiece attached thereto. The handpiece emits laser energy from a single aperture and is moved around the surface of the heart to create the desired number of channels. U.S. Pat. No. 5,380,316 issued Jan. 10, 1995 to Aita et al. purports to teach the use of a flexible lasing apparatus which is inserted into the open chest cavity in a surgical procedure. A lens at the distal end of the flexible apparatus is used to focus laser energy, and the apparatus is moved about the surface of the heart to create the desired number of channels.
U.S. Pat. No. 5,389,096 issued Feb. 14, 1995 to Aita et al. purports to teach one method of percutaneous TMR using an elongated flexible lasing apparatus with control lines and a focusing lens structure at the distal tip. The method describes the use of pressure to attempt to stabilize the apparatus against the wall of the heart. None of the cited TMR prior art references suggest delivery of drugs with the TMR apparatus.
In the field of drug delivery, many techniques currently exist for delivering drugs or other materials to the human body. These include, among others, oral administration, injection directly into body tissue such as through an intramuscular injection, transcutaneous injection in which a compound is injected directly into the vasculature of a patient, or topical administration. Although many situations are satisfactorily treated by the general or directed, typically systemic acting administration of a drug, there are a great many treatments which could be facilitated and/or improved by the ability to deliver or administer a drug locally to a selected portion of a patient's body.
A recent patent, U.S. Pat. No. 5,498,238 issued Mar. 12, 1996 to Shapland et al., discloses a method of simultaneous angioplasty and drug delivery to localized portions of arteries. The patent teaches the use of an expandable balloon end type catheter which can be filled with a drug-containing fluid and which is allowed to permeate through a semi-permeable membrane of the balloon-tip end and thereby be delivered directly to the surface of arteriosclerotic lesions on stenosed arteries. However, the patent does not teach drug delivery in conjunction with any type of laser procedure nor does it contemplate such delivery with the aid of laser energy. Nor does it teach delivery of drugs or other materials directly into tissue located within portions of the body not otherwise directly accessible.
U.S. Pat. No. 5,386,837 to Sterzer discloses an “electrochemotherapeutic” technique for treating tumors in which high intensity electromagnetic force fields (including a laser) are applied to the body after chemotherapy has been applied. This is intended to create large, transient pores in individual cells of a superficially-seated tumor lesion located between individually mounted ceramic horn antennae by non-invasively applying a highly directional beam of force-field shock of HF pulsed wave energy into the cells, thus inducing the drug to enter the cells. The patent does not, however, teach apparatus or methods for disposing such drugs or medications into the portion of the body to be treated, but instead relies on the standard approaches to chemotherapy drug delivery. The patent does not anticipate delivery of drugs to selected portions of myocardium in the heart or other internal organs of the body, but rather is directed to augmented chemotherapy to treat breast cancer and prostate cancer or benign prostatic hyperplasia (BPH).
There are a number of important problems that are not addressed by systems of the present art. None of the prior art teaches how to administer drugs from within the tissue to be treated thereby minimizing the amount of drug required, particularly for costly drugs, and also confining the drug or drugs to the particular part of the body or tissue of interest, with more importance in this regard for the administration of toxic drugs. These problems are addressed by the delivery of drugs to the tissue of internal organs, such as the heart, in conjunction with or assisted by laser energy delivery. In particular, with regard to TMR procedures, the use of laser energy combines the latest advances in the development of cardiac medications with the most advanced techniques of TMR in order to enhance and optimize treatment administered to the patient.
ADVANTAGES AND SUMMARY OF THE INVENTION
In general, this invention is directed to the delivery of drugs in any form in, near or around laser-created openings in structures including organs and other tissue within the human body, and more particularly, this invention is directed toward a system for delivering a drug directly into a channel formed in a target region of the body. The channel is created using essentially any medical laser system, particularly laser systems used in TMR procedures. While TMR procedures have been directed towards revascularization of the heart, it is understood that these principles underlying the devices and methods of use of this invention can be applied to other areas of the body. Therefore, in the context of this specification, the terms target area, target region and target surface include a patient's heart as well as any other portion of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Laser assisted drug delivery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Laser assisted drug delivery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Laser assisted drug delivery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3217102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.