Electrical computers and digital processing systems: memory – Storage accessing and control – Specific memory composition
Reexamination Certificate
1998-12-30
2002-07-09
Nguyen, Than (Department: 2189)
Electrical computers and digital processing systems: memory
Storage accessing and control
Specific memory composition
C711S111000, C711S112000, C711S113000, C710S120000, C710S120000, C710S120000, C710S120000
Reexamination Certificate
active
06418511
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates generally to data storage systems, and more particularly to data storage systems having redundancy arrangements to protect against total system failure in the event of a failure in a component or subassembly of the storage system.
As is known in the art, large host (i.e., mainframe or open system) computer systems require large capacity data storage systems. These large host computer systems generally includes data processors which perform many operations on data introduced to the computer system through peripherals including the data storage system. The results of these operations are output to peripherals, including the storage system.
One type of data storage system is a magnetic disk storage system. Here a bank of disk drives and the host computer system are coupled together through an interface. The interface includes CPU, or “front end”, controllers (or directors) and “back end” disk controllers (or directors). The interface operates the controllers (or directors) in such a way that they are transparent to the computer. That is, data is stored in, and retrieved from, the bank of disk drives in such a way that the host computer system merely thinks it is operating with one large memory. One such system is described in U.S. Pat. No. 5,206,939, entitled “System and Method for Disk Mapping and Data Retrieval”, inventors Moshe Yanai, Natan Vishlitzky, Bruno Alterescu and Daniel Castel, issued Apr. 27, 1993, and assigned to the same assignee as the present invention.
As described in such U.S. Patent, the interface may also include, in addition to the CPU controllers (or directors) and disk controllers (or directors), addressable cache memories. The cache memory is a semiconductor memory and is provided to rapidly store data from the host computer system before storage in the disk drives, and, on the other hand, store data from the disk drives prior to being sent to the host computer. The cache memory being a semiconductor memory, as distinguished from a magnetic memory as in the case of the disk drives, is much faster than the disk drives in reading and writing data.
The CPU controllers, disk controllers and cache memory are interconnected through a backplane printed circuit board. More particularly, disk controllers are mounted on disk controller printed circuit boards. CPU controllers are mounted on CPU controller printed circuit boards. And, cache memories are mounted on cache memory printed circuit boards. The disk controller, CPU controller and cache memory printed circuit boards plug into the backplane printed circuit board. In order to provide data integrity in case of a failure in a controller, the backplane printed circuit board has a pair of buses. One set of the disk controllers is connected to one bus and another set of the disk controllers is connected to the other bus. Likewise, one set of the CPU controllers is connected to one bus and another set of the CPU controllers is connected to the other bus. The cache memories are connected to both buses. Each one of the buses provides data, address and control information.
Thus, the use of two buses provides a degree of redundancy to protect against a total system failure in the event that the controllers, or disk drives connected to one bus fail. Further, the use of two busses increases the data transfer bandwidth of the system compared to a system having a single bus.
SUMMARY OF THE INVENTION
In accordance with the present invention, a data storage system is provided wherein a host computer is coupled to a bank of disk drives through a system interface. The system interface includes a memory having a high address memory section and a low address memory section. A plurality of directors controls data transfer between the host computer and the bank of disk drives as such data passes through the memory. A pair of high address busses, comprising a plurality of bus high address bus segments, is in communication with the high address memory section and a pair of low address busses, comprising a plurality of low address bus segments, is in communication with the low address memory section. Each one of the directors is in communication with one of the pair of high address busses and one of the pair of low address busses.
In accordance with another feature of the invention, a data storage system is provided wherein a host computer is coupled to a bank of disk drives through a system interface. The system interface includes: a memory; a bus, comprising a plurality of bus segments; and a data loop comprising a plurality of directors in communication with the memory through the plurality of bus segments. The plurality of directors control data transfer between the host computer and the bank of disk drives as such data passes through the memory via the data loop.
In accordance with another feature of the invention, a data storage system is provided wherein a host computer is coupled to a bank of disk drives through a system interface. The system interface includes a memory having a high address memory section and a low address memory section. The interface also includes: a pair of high address busses, comprising a plurality of bus high address bus segments, in communication with the high address memory section; a pair of low address busses, comprising a plurality of low address bus segments, is in communication with the low address memory section; and a plurality of data loops, comprising a plurality of directors in communication with the memory through the plurality of high address and low address bus segments. The directors control data transfer between the host computer and the bank of disk drives as such data passes through the memory via the data loops.
In accordance with another feature of the invention, a data storage system is provided wherein a host computer is coupled to a bank of disk drives through a system interface. The system interface includes: a memory having a high address memory section and a low address memory section; a high address bus, comprising a plurality of bus high address bus segments, in communication with the high address memory section; a low address bus, comprising a plurality of low address bus segments, is in communication with the low address memory section; and a pair of data loops. A first one of such pair of data loops comprises a first plurality of directors in communication with the memory through the plurality of high address bus segments for controlling data transfer between the host computer and the bank of disk drives as such data passes through the high address memory section. A second plurality of directors is in communication with the memory through the plurality of low address bus segments for controlling data transfer between the host computer and the bank of disk drives as such data passes through the low address memory section.
In accordance with another feature of the invention, the system interface includes a printed circuit board having a plurality of electrical connectors arranged in a linear array and electrically connected to the busses. The electrical connectors are adapted to receive the directors and the memory and electrically interconnect the directors and memory received therein to the busses. A first set of the directors is electrically connected to a first pair of the busses and a second set of directors interleaved with the first set is electrically connected to a second pair of the busses.
In accordance with still another feature of the invention, each one of the electrical connectors has three sections. For the electrical connectors which receive the first set of directors, such electrical connectors have a first one of the three section connected to a first one of the busses in the first pair of busses and a second one of the three sections connected to a second one of the busses in the first pair of busses. For the second set of directors, the electrical connectors have the first one of the three section connected to a first one of the busses in the second pair of busses and the second one of the three sectio
Gadarowski Michael
Zani Mark A.
Daly, Crowley & Mofford LLP
EMC Corporation
Nguyen Than
LandOfFree
Large capacity data storage systems using redundant buses does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Large capacity data storage systems using redundant buses, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Large capacity data storage systems using redundant buses will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2821784