Key transformation unit for an IC card

Electrical computers and digital processing systems: support – Multiple computer communication using cryptography – Packet header designating cryptographically protected data

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C713S172000, C380S278000, C380S282000, C380S285000

Reexamination Certificate

active

06385723

ABSTRACT:

RELATED APPLICATION
This application is related to U.S. application Ser. No. 09/075,973 filed on May 11, 1998, entitled “IC Card Transportation Key Set,” and assigned to Mondex International Limited, which is hereby incorporated by reference.
BACKGROUND OF INVENTION
Integrated circuit (“IC”) cards are becoming increasingly used for many different purposes in the world today. An IC card (also called a smart card) typically is the size of a conventional credit card which contains a computer chip including a microprocessor, read-only-memory (ROM), electrically erasable programmable read-only-memory (EEPROM), an Input/Output (I/O) mechanism and other circuitry to support the microprocessor in its operations. An IC card may contain a single application or may contain multiple independent applications in its memory. MULTOS™ is a multiple application operating system which runs on IC cards, among other platforms, and allows multiple applications to be executed on the card itself. This allows a card user to run many programs stored in the card (for example, credit/debit, electronic money/purse and/or loyalty applications) irrespective of the type of terminal (i.e., ATM, telephone and/or POS) in which the card is inserted for use.
A conventional single application IC card, such as a telephone card or an electronic cash card, is loaded with a single application when it is manufactured and before it is given to a card user. That application, however, cannot be modified or changed after the card is issued even if the modification is desired by the card user or card issuer. Moreover, if a card user wanted a variety of application functions to be performed by IC cards issued to him or her, such as both an electronic purse and a credit/debit function, the card user would be required to carry multiple physical cards on his or her person, which would be quite cumbersome and inconvenient. If an application developer or card user desired two different applications to interact or exchange data with each other, such as a purse application interacting with a frequent flyer loyalty application, the card user would be forced to swap multiple cards in and out of the card-receiving terminal, making the transaction difficult, lengthy and inconvenient.
Therefore, it is beneficial to store multiple applications on the same IC card. For example, a card user may have both a purse application and a credit/debit application on the same card so that the user could select which type of payment (by electronic cash or credit card) to use to make a purchase. Multiple applications could be provided to an IC card if sufficient memory exists and an operating system capable of supporting multiple applications is present on the card. Although multiple applications could be preselected and placed in the memory of the card during its production stage, it would also be beneficial to have the ability to load and delete applications for the card post-production as needed.
The increased flexibility and power of storing multiple applications on a single card create new challenges to be overcome concerning the integrity and security of the information (including application code and associated data) exchanged between the individual card and the application provider as well as within the entire system when loading and deleting applications. It would be beneficial to have the capability in the IC card system to exchange data among cards, card issuers, system operators and application providers securely and to load and delete applications securely at any time from a local terminal or remotely over a telephone line, Internet or intranet connection or other data conduit. Because these data transmission lines are not typically secure lines, a number of security and entity authentication techniques must be implemented to make sure that applications being sent over the transmission lines are not tampered with and are only loaded on the intended cards.
As mentioned, it is important—particularly where there is a continuing wide availability of new applications to the cardholder—that the system has the capability of adding applications onto the IC card subsequent to issuance. This is necessary to protect the longevity of the IC cards; otherwise, once an application becomes outdated, the card would be useless. It would be beneficial to allow the addition of applications from a remote location as well as from a direct connection to an application provider's terminal. For example, it would be beneficial for a card user to be able to plug his IC card into his home computer and download an application over the Internet. This type of remote loading of applications raises a number of security risks when transmitting the application code and related data over an unsecured communications line such as the Internet. At least three issues need to be addressed in a system which provides such a capability.
The first issue is to make sure that the IC card receiving the application is the intended IC card and not another IC card. The second issue is determining how the IC card can authenticate that the application came from the proper application provider and not an unknown third party. The third issue concerns preventing third parties from reading the application and making an unauthorized copy. If a portion of the application is encrypted to address the latter issue, the intended IC card needs to have access to the correct key to decrypt the application. In a system with many IC cards and additionally many application providers, a secure key transfer technique is required so that the intended IC card can use the correct key for the application which is received. These concerns are raised by both remote application loading as well as local terminal application loading.
Accordingly, it is an object of this invention to provide a key transfer and authentication technique and specifically to provide a secure IC-card system that allows for the secure transfer of smart card applications which may be loaded onto IC cards.
SUMMARY OF THE INVENTION
These and other objectives are achieved by the present invention which provides an IC card system and method for securely loading an application onto an IC card including providing a secret and public key pair for the IC card, encrypting at least a portion of the application using a transfer key, encrypting the transfer key using the IC card's public key to form a key transformation unit, transmitting the encrypted application and the key transformation unit to the IC card, decrypting the key transformation unit using the IC card's secret key to provide the transfer key, decrypting the encrypted application using the provided transfer key and storing the decrypted application on the IC card.
In a preferred embodiment, the secure loading system and method allows the application provider to encrypt two or more portions of the application to be transmitted with two or more different keys, encrypt the two or more keys with the public key of the IC card to form a key transformation unit including the locations of the encrypted portions. Both the encrypted application and the key transformation unit are sent to the IC card. Because the decryption keys are encrypted with the IC card's public key, only the IC card's secret key can decrypt the key transformation unit. The transfer keys and the locations of the encrypted portions are recovered from the decrypted key transformation unit and the application is decrypted using the recovered transfer keys. This ensures that only the intended IC card can decrypt and use the application which was transmitted to that IC card.
In a preferred embodiment, an application load certificate is also sent to the IC card which is receiving the application. The application load certificate contains the public key of the application provider encrypted by the secret key of the certificate authority (“CA”), or the entity that manages the overall security of the IC card system. The IC card then uses a certificate authority public key to make sure that the certificate was

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Key transformation unit for an IC card does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Key transformation unit for an IC card, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Key transformation unit for an IC card will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2882361

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.