Inversion process for making fat continuous spreads

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Fat or oil is basic ingredient other than butter in emulsion...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S602000

Reexamination Certificate

active

06171637

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to fat continuous low fat spreads of good quality. This invention also relates to a process for preparing low fat spreads of good quality.
BACKGROUND OF THE INVENTION
Fat continuous and very low fat spreads have been described in the literature. Two approaches have been followed to produce the low fat and very low fat spreads. One approach is to cool the fat continuous (water-in-oil) premix and produce a fat continuous (water-in-oil) spread. For spreads with less than 40% fat and in particular less than 30% fat, the level and type of emulsifiers are optimized to produce the fat continuous product. At these levels of emulsifiers, the quality of the product is poor due to higher stability of the emulsions which are difficult to invert in the mouth, affecting the salt and flavor release. Any attempts to destabilize the emulsion with destabilizing agents such as proteins, results in a water continuous premix and cannot be processed using conventional spread processes.
The second approach is to prepare a water continuous premix (oil-in-water) which in the presence of gelling agents is inverted to a fat continuous product (water-in-oil). The choice gelling agent is gelatin, a reversible gel which melts below the body temperature. An improvement in the salt and flavor release is possible if the process is optimized to produce an inverted (water-in-oil) product with some levels of the added proteins.
Fat continuous products wherein the aqueous phase contains a gelling agent and is gel forming are described in U.S. Pat. No. 4,917,915 (Cain et al). The gelling agents are selected from a gelling hydrolyzed starch derivative, gelatin, carrageenan and mixtures thereof. The hydrolyzed starch is generally defined as a gelling maltodextrin. Non-gelling starches are also described as present in the aqueous phase as bulking agents or viscosity enhancers. The process involves inverting the emulsion at colder temperatures <20 C.
Bodor et al. (U.S. Pat. No. 4,103,037) describes fat continuous products which also contain gelling agents, such as gelatin and Danish agar, in the aqueous phase. Bodor teaches that the type of gelling agent used in low fat continuous spread is critical since most gelling agents that can assist in the stabilization of the emulsions have too high a melting point and give a gluey unpleasant impression when chewed. The process involves inverting the emulsion at colder temperatures <20 C.
Bodor et al (U.S. Pat. No. 5,554,407) uses a process of cold mixing to process a water continuous emulsion to a fat continuous emulsion. The cold mixing of a fat continuous phase with an aqueous phase at <26 C. is taught in this patent.
Thus the above teaches us the inversion process where the emulsion is cooled prior to inverting a water continuous emulsion to a fat continuous emulsion and processed further resulting in finished spread which is fat continuous.
SUMMARY OF THE INVENTION
The invention relates to a process for preparing good quality low fat spreads (20-60% fat) more preferably in the range of 25-40% fat. This was achieved by the use of non gelling hydrocolloids to provide higher viscosity to the aqueous phase, however at a concentration which results in a water continuous emulsion. The emulsifier levels and types were chosen to result in a water continuous emulsion. Even though it is possible to phase invert via a cold inversion process when using non gelling hydrocolloids, this situation is not as stable and reliable when compared to the process where gelling hydrocolloids are used.
The invention is a process where the water continuous emulsion is phase inverted prior to the cooling step using a high speed C unit. The emulsion temperature was in the range of 45-65 C. It is called a hot inversion. What allows the emulsion to invert to fat continuous is the difference between the viscosity of the aqueous and the fat phases combined with a well balanced emulsifier system which allows the water continuous emulsion to be maintained in the tank while a fat continuous phase forms upon inversion.
In the hot inversion process of the invention, the theological properties of the aqueous phase and the emulsifier system in the fat phase are important for the spreads to be stable at very low fat levels the resulting spreads have good organoleptic properties.
The invention also relates to fat continuous low fat spreads prepared by the above process.
DETAILED DESCRIPTION OF THE INVENTION
Unless otherwise indicated, as used herein, %, means % by weight.
The starting materials recited in this specification are either known or can be prepared by known methods.
Hydrocolloids used in the compositions of the invention include xanthan gum, guar gum, cellulose gum, carrageenan gum, locust bean gum, alginate, viscosifying starches native or modified (modified means chemically or physically modified), or mixtures thereof. Other food hydrocolloids are described in Food Hydrocolloids, Volumes 1, 2 and 3 Editor, Martin Glicksman, CRC Press Incorporated Boca Raton, Fla., 1982 and 1983 which is hereby incorporated by reference.
The mean aqueous phase droplet size distribution of the dispersed aqueous phase in the final product is less than about 20 microns, preferably less than about 10 microns and the amount of free water present is less than about 5%, preferably less than about 3%, most preferably 0%. Free water is defined as the water in a droplet of greater than 200 microns. The droplet size is determined by a method described in J. C. van den Enden, D. et al., J. Colloid., Interface Science 140(I) (1990) pp 105-113 which is herein incorporated by reference; and also described in U.S. Pat. No. 5,302,408 which also is herein incorporated by reference. As used herein, D3.3 stands for mean water droplet size distribution as measured in microns.
The emulsion stability can be determined by measuring the breakdown of margarine or spreads, at increased temperature. It is an important factor for assessing oral response. The method has a good correlation with panel taste assessments on oral response of refrigerated margarine or spreads.
The emulsion stability by conductivity test is a method described herein. In this test, the change in conductivity of a fat spread in distilled water is measured during heating the sample in distilled water at a rate of 1 C. minute, until the emulsion is totally broken-down.
The procedure for the method is as follows:
The sample is pretempered in a constant temperature cabinet at least three days before measuring. The temperature can be 5, 10, 15, 20 or 25 C., with 15 C. being the most widely used.
Fill the jacketed glass vessel (minimum inner diameter of 5.9 cm and a minimum inner height of 9.5 cm) with exactly 200 ml of distilled water. The jacketed vessel is placed on magnetic stirrer which operates at 1000 rev/min. A stirring magnet of diameter 8.5 mm and a length of 38 mm is placed in the vessel. The temperature of the jacketed vessel is controlled by a programming equipment (Lauda model P120/25) which heats the water at a rate 1 C./min after equilibrating the water in the water bath temperature at 23 C. by recirculating the water through the jacket of the vessel.
Fill the glass syringe with about 2 g of the sample by pressing its wider opening into the sample and clean the outside. Weigh the filled syringe. Start the temperature programmer and the recorder. Inject the sample into the jacketed vessel when the water in the vessel has reached a temperature of 25 C. Weigh the syringe and note the amount of sample that has been injected together with the sample code and the measuring range on the recorder paper. The controlled increase of temperature is continued until the emulsion has broken down completely; the conductivity will increase according to the conductivity/temperature coefficient and the recorder will show a straight line. The conductivity is measured by measuring the conductance between two parallel plates of the conductivity cell (Philips, type 9512/01) immersed in the distilled water which is connected to a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inversion process for making fat continuous spreads does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inversion process for making fat continuous spreads, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inversion process for making fat continuous spreads will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2543223

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.