Interactive orthodontic care system based on intra-oral...

Dentistry – Orthodontics – Method of positioning or aligning teeth

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06648640

ABSTRACT:

NOTICE REGARDING COPYRIGHT
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, at it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright rights whatsoever.
TABLE OF CONTENTS
Background of the Invention
Summary of the invention
Brief Description of the Drawings
Detailed Description of the Preferred Embodiment
Part 1.
System Overview
Part 2.
Three-Dimensional Image Capture
Scanner Manufacture and Calibration
Pattern Recognition
Decoding
Derivation of 3-D Point Cloud per Image
Part 3.
Generation of Digital Impression
Entry point to registration
Frame to Frame Registration
Cumulative Registration of Entire Jaw
Segment registration
Landmarking
Separation of Teeth into Individual Tooth Objects (tooth modeling)
Part 4.
Treatment Planning
Part 5.
Appliance Manufacturing
Robot Design
Archwire Manufacture
Claims
Abstract
BACKGROUND OF THE INVENTION
A. Field of the Invention
This invention relates generally to the field of orthodontics. More particularly, the invention relates to a computerized, interactive method and associated system for orthodontic treatment. The system includes a hand-held optical scanner capturing 3-dimensional information of objects, interactive computer-based treatment planning using three-dimensional tooth objects and user specified simulation of tooth movement, and appliance manufacturing apparatus, including bending machines.
B. Description of Related Art
In orthodontics, a patient suffering from a malocclusion is typically treated by bonding brackets to the surface of the patient's teeth. The brackets have slots for receiving an archwire. The bracket-archwire interaction governs forces applied to the teeth and defines the desired direction of tooth movement. Typically, the bends in the wire are made manually by the orthodontist. During the course of treatment, the movement of the teeth is monitored. Corrections to the bracket position and/or wire shape are made manually by the orthodontist.
The key to efficiency in treatment and maximum quality in results is a realistic simulation of the treatment process. Today's orthodontists have the possibility of taking plaster models of the upper and lower jaw, cutting the model into single tooth models and sticking these tooth models into a wax bed, lining them up in the desired position, the so-called set-up. This approach allows for reaching a perfect occlusion without any guessing. The next step is to bond a bracket at every tooth model. This would tell the orthodontist the geometry of the wire to run through the bracket slots to receive exactly this result. The next step involves the transfer of the bracket position to the original malocclusion model. To make sure that the brackets will be bonded at exactly this position at the real patient's teeth, small templates for every tooth would have to be fabricated that fit over the bracket and a relevant part of the tooth and allow for reliable placement of the bracket on the patient's teeth. To increase efficiency of the bonding process, another option would be to place each single bracket onto a model of the malocclusion and then fabricate one single transfer tray per jaw that covers all brackets and relevant portions of every tooth. Using such a transfer tray guarantees a very quick and yet precise bonding using indirect bonding.
However, it is obvious that such an approach requires an extreme amount of time and labor and thus is too costly, and this is the reason why it is not practiced widely. The normal orthodontist does not fabricate set-ups; he places the brackets directly on the patient's teeth to the best of his knowledge, uses an off-the-shelf wire and hopes for the best. There is no way to confirm whether the brackets are placed correctly; and misplacement of the bracket will change the direction and/or magnitude of the forces imparted on the teeth. While at the beginning of treatment things generally run well as all teeth start to move at least into the right direction, at the end of treatment a lot of time is lost by adaptations and corrections required due to the fact that the end result has not been properly planned at any point of time. For the orthodontist this is still preferable over the lab process described above, as the efforts for the lab process would still exceed the efforts that he has to put in during treatment. And the patient has no choice and does not know that treatment time could be significantly reduced if proper planning was done.
U.S. Pat. No. 5,431,562 to Andreiko et al. describes a computerized, appliance-driven approach to orthodontics. In this method, first certain shape information of teeth is acquired. A uniplanar target archform is calculated from the shape information. The shape of customized bracket slots, the bracket base, and the shape of an orthodontic archwire, are calculated in accordance with a mathematically-derived target archform. The goal of the Andreiko et al. method is to give more predictability, standardization, and certainty to orthodontics by replacing the human element in orthodontic appliance design with a deterministic, mathematical computation of a target archform and appliance design. Hence the '562 patent teaches away from an interactive, computer-based system in which the orthodontist remains fully involved in patient diagnosis, appliance design, and treatment planning and monitoring.
More recently, in the late 1990's Align Technologies began offering transparent, removable aligning devices as a new treatment modality in orthodontics. In this system, a plaster model of the dentition of the patent is obtained by the orthodontist and shipped to a remote appliance manufacturing center, where it is scanned with a laser. A computer model of the dentition in a target situation is generated at the appliance manufacturing center and made available for viewing to the orthodontist over the Internet. The orthodontist indicates changes they wish to make to individual tooth positions. Later, another virtual model is provided over the Internet and the orthodontist reviews the revised model, and indicates any further changes. After several such iterations, the target situation is agreed upon. A series of removable aligning devices or shells are manufactured and delivered to the orthodontist. The shells, in theory, will move the patient's teeth to the desired or target position.
The art has lacked an effective, computer-based interactive orthodontic treatment planning system that provides the necessary tools to allow the orthodontist to quickly and efficiently design a treatment plan for a patient. The art has also lacked a treatment planning system in which the orthodontist-derived parameters for the treatment can be translated into a design of an orthodontic appliance in real time, while the patient is in the chair. Real-time appliance design as described herein also allows for real-time communication of the treatment plan or appliance design to occur with the patient, or transmitted over a communications link and shared with a colleague or remote appliance manufacturing facility. Alternatively, the treatment planning can be performed remotely and a digital treatment plan sent to the orthodontist for review, interactive modification, or approval.
Scanners are devices for capturing and recording information from a surface of an object. Scanners for obtaining information from a two-dimensional surface, such as reading bar codes or characters printed on a piece of paper, are widely known. Several scanners have been proposed for recording three-dimensional information as well, including the field of dentistry.
U.S. Pat. No. 4,837,732 and U.S. Pat. No. 4,575,805 to Brandestini and Moermann propose a scanning system for in vivo, non-contact scanning of teeth. The patents describe a procedure for optically mapping a prepared tooth with a non-contact scan-head. The scan-head delive

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interactive orthodontic care system based on intra-oral... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interactive orthodontic care system based on intra-oral..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interactive orthodontic care system based on intra-oral... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.