Intelligent data storage manager

Electrical computers and digital data processing systems: input/ – Input/output data processing – Input/output command process

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S036000, C710S200000, C711S100000, C711S114000, C379S219000

Reexamination Certificate

active

06330621

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to data storage subsystems and, in particular, to a dynamically mapped virtual data storage subsystem which includes a data storage manager that functions to combine the non-homogeneous physical devices contained in the data storage subsystem to create a logical device with new and unique quality of service characteristics that satisfy the criteria for the policies appropriate for the present data object.
PROBLEM
It is a problem in the field of data storage subsystems to store the ever increasing volume of application data in an efficient manner, especially in view of the rapid changes in data storage characteristics of the data storage elements that are used to implement the data storage subsystem and the increasingly specific need of the applications that generate the data.
Data storage subsystems traditionally comprised homogeneous collections of data storage elements on which the application data was stored for a plurality of host processors. As the data storage technology changed and a multitude of different types of data storage elements became available, the data storage subsystem changed to comprise subsets of homogeneous collections of data storage elements, so that the application data could be stored on the most appropriate one of the plurality of subsets of data storage elements. Data storage management systems were developed to route the application data to a selected subset of data storage elements and a significant amount of processing was devoted to ascertaining the proper data storage destination for a particular data set in terms of the data storage characteristics of the selected subset of data storage elements. Some systems also migrate data through a hierarchy of data storage elements to account for the timewise variation in the data storage needs of the data sets.
In these data storage subsystems, the quality of service characteristics are determined by the unmodified physical attributes of the data storage elements that are used to populate the data storage subsystem. One exception to this rule is disclosed in U.S. Pat. No. 5,430,855 titled “Disk Drive Array Memory System Using Nonuniform Disk Drives,” which discloses a data storage subsystem that uses an array of data storage elements that vary in their data storage characteristics and/or data storage capacity. The data storage manager in this data storage subsystem automatically compensates for any nonuniformity among the disk drives by selecting a set of physical characteristics that define a common data storage element format. However, the data storage utilization of the redundancy groups formed by the data storage manager is less than optimal, since the least common denominator data storage characteristics of the set of disk drives is used as the common disk format. Thus, disk drive whose data storage capacity far exceeds the smallest capacity disk drive in the redundancy group suffers from loss of utilization of its excess data storage capacity. Therefore, most data storage subsystems do not utilize this concept and simply configure multiple redundancy groups, with each redundancy group comprising a homogeneous set of disk drives. A problem with such an approach is that the data storage capacity of the data storage subsystem must increase by the addition of an entire redundancy group. Furthermore, the replacement of a failed disk drive requires the use of a disk drive that matches the characteristics of the remaining disk drives in the redundancy group, unless loss of the excess data storage capacity of the newly added disk drive were incurred, as noted above.
Thus, it is a prevalent problem in data storage subsystems that the introduction of new technology is costly and typically must occur in fairly large increments, occasioned by the need for the data storage subsystem to be comprised of homogeneous subset of data storage devices, even in a virtual data storage subsystem. Therefore, data administrators find it difficult to cost effectively manage the increasing volume of data that is being generated in order to meet the needs of the end users' business. In addition, the rate of technological innovation is accelerating, especially in the area of increases in data storage capacity and the task of incrementally integrating these new solutions into existing data storage subsystems is difficult to achieve.
SOLUTION
The above described problems are solved and a technical advance achieved by the present intelligent data storage manager that functions to combine the non-homogeneous physical devices contained in a data storage subsystem to create a logical device with new and unique quality of service characteristics that satisfy the criteria for the policies appropriate for the present data object. In particular, if there is presently no logical device that is appropriate for use in storing the present data object, the intelligent data storage manager defines a new logical device using existing physical and/or logical device definitions as component building blocks to provide the appropriate characteristics to satisfy the policy requirements. The intelligent data storage manager uses weighted values that are assigned to each of the presently defined logical devices to produce a best fit solution to the requested policies in an n-dimensional best fit matching algorithm. The resulting logical device definition is then implemented by dynamically interconnecting the logical devices that were used as the components of the newly defined logical device to store the data object.


REFERENCES:
patent: 5131087 (1992-07-01), Warr
patent: 5546557 (1996-08-01), Allen et al.
patent: 5619690 (1997-04-01), Matsumani et al.
patent: 5829046 (1998-10-01), Tzelnic et al.
patent: 5845147 (1998-12-01), Vishlitzky et al.
patent: 5960451 (1999-09-01), Voigt et al.
patent: 6111944 (2000-08-01), Molin
patent: 0 689 125 A (1995-12-01), None
patent: 98 40810 A (1992-07-01), None
patent: 97 07461 A (1997-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Intelligent data storage manager does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Intelligent data storage manager, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Intelligent data storage manager will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2600066

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.