Integrated multilayered microfludic devices and methods for...

Chemical apparatus and process disinfecting – deodorizing – preser – Chemical reactor – With means applying electromagnetic wave energy or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S129000, C422S186000, C422S240000, C156S089110, C156S089120, C219S678000, C219S687000, C219S756000

Reexamination Certificate

active

06572830

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to the field of microfluidic devices. More particularly, this invention relates to a multilayered microfluidic device, formed from layers of greensheet, having components that are co-fired with and sintered to the green-sheet layers to provide an integrated and monolithic structure and also relates to methods for making such devices.
2. Description of Related Art
Microfluidic devices have a wide variety of chemical and biological applications. Specifically, microfluidic devices can be used to mix, react, meter, analyze, and detect chemicals and biological materials in a fluid state. Many synthetic and analytical techniques that conventionally require large, bulky, and complicated apparatus can be miniaturized as microfluidic devices.
Microfluidic devices are most commonly made from silicon, glass, or plastic substrates. However, each of these materials has certain disadvantages that limit its utility. Channels and various other microfluidic structures may be etched into silicon, but such etching processes are not typically able to form the complex three-dimensional structures and embedded structures that are often desirable in microfluidic devices. Silicon, as a material, is also not compatible with many fluids containing biological materials. Typically, this problem is overcome by the additional step of applying a special coating to the microfluidic channels. Finally, because silicon is a semiconductor, certain pumping techniques, such as electrohydrodynamic pumping and electroosmotic pumping, are difficult or impossible to achieve. Overall, silicon is an expensive substrate to work with, making it of only limited use for the large scale production of microfluidic devices that typically do not require structures with dimensions less than about 10 microns.
Like silicon, channels may also be etched into glass substrates. Although three-dimensional and embedded structures can be built up by bonding together successive layers of glass, using an anodic bonding process, this bonding process is difficult and very costly. In particular, each layer is added sequentially, i.e., only one at a time. Moreover, the surface of each successive layer must be nearly perfectly flat in order to achieve reliable bonding. This stringent flatness requirement makes the fabrication of multilayered glass devices difficult and expensive and results in low yields.
Plastic also has a number of disadvantages as a substrate for microfluidic devices. First, most types of plastic substrate cannot be used above about 350° C., thereby limiting the extent to which plastic microfluidic devices can heat fluids. Second, many plastic materials, like silicon, have biocompatibility problems. Accordingly, biocompatibility is typically achieved by the additional step of adding special coatings to the fluid passageways. Third, it is believed that, like silicon, electroosmotic pumping would be difficult or impossible to achieve in plastic microfluidic devices because of the lack of available fixed surface charge. Fourth, the ability to fabricate three-dimensional and embedded structures in plastic devices is limited because it is be difficult to join more than two plastic layers together.
SUMMARY OF THE INVENTION
In a first principal aspect, the present invention provides a multilayered microfluidic device comprising a substantially monolithic structure formed from a plurality of green-sheet layers sintered together, wherein the green-sheet layers include particles selected from the group consisting of ceramic particles, glass particles, and glass-ceramic particles. The substantially monolithic structure has a fluid passageway defined therein. The fluid passageway has an inlet port for receiving fluid, an outlet port for releasing a fluid, and an interconnection between the inlet port and the outlet port. The substantially monolithic structure also has an electrically conductive pathway defined therein, at least a portion of which is formed by sintering a thick-film paste to at least one of the green-sheet layers.
In a second principal aspect, the present invention provides a multilayered microfluidic device comprising a substantially monolithic structure formed from a plurality of green-sheet layers sintered together, wherein the green-sheet layers include particles selected from the group consisting of ceramic particles, glass particles, and glass-ceramic particles. The substantially monolithic structure has a fluid passageway defined therein. The fluid passageway has an inlet port for receiving fluid, an outlet port for releasing a fluid, and an interconnection between the inlet port and the outlet port. A fluid sensor for sensing fluid in a portion of the fluid passageway is sintered to at least one of the green-sheet layers so as to be integral with the substantially monolithic structure.
In a third principal aspect, the present invention provides a multilayered microfluidic device comprising a substantially monolithic structure formed from a plurality of green-sheet layers sintered together, wherein the green-sheet layers include particles selected from the group consisting of ceramic particles, glass particles, and glass-ceramic particles. The substantially monolithic structure has a fluid passageway defined therein. The fluid passageway has an inlet port for receiving fluid, an outlet port for releasing a fluid, and an interconnection between the inlet port and the outlet port. A fluid motion transducer for converting electrical energy into fluid motion in a portion of the fluid passageway is sintered to at least one of the green-sheet layers so as to be integral with the substantially monolithic structure.
In a fourth principal aspect, the present invention provides a multilayered microfluidic device comprising a substantially monolithic structure formed from a plurality of green-sheet layers sintered together, wherein the green-sheet layers include particles selected from the group consisting of ceramic particles, glass particles, and glass-ceramic particles. The substantially monolithic structure has a fluid passageway defined therein. The fluid passageway has an inlet port for receiving fluid, an outlet port for releasing a fluid, and an interconnection between the inlet port and the outlet port. The substantially monolithic structure also includes an optically transmissive portion for providing external optical access to a portion of the fluid passageway.
In a fifth principal aspect, the present invention provides a multilayered microfluidic device comprising a substantially monolithic structure formed from a plurality of green-sheet layers sintered together, wherein the green-sheet layers include particles selected from the group consisting of ceramic particles, glass particles, and glass-ceramic particles. The substantially monolithic structure has a fluid passageway defined therein. The fluid passageway has an inlet port for receiving fluid, an outlet port for releasing a fluid, an interconnection between the inlet port and the outlet port, and includes a cavity. The substantially monolithic structure also includes means for lysing. cells in the cavity.
In a sixth principal aspect, the present invention provides a method for making a multilayered microfluidic device. A plurality of green-sheet layers is textured in a first predetermined pattern defining a fluid passageway. The green-sheet layers include particles selected from the group consisting of ceramic particles, glass particles, and glass-ceramic particles. A thick-film paste is applied to the green-sheet layers in a second predetermined pattern defining a fluid-interacting component. The green-sheet layers are then sintered together at a predetermined temperature for a predetermined amount of time to form a substantially monolithic structure. The substantially monolithic structure has the fluid passageway and the fluid-interacting component defined therein.
In a seventh principal aspect, the present invention provides a multilayered microfluidic device comprising a subst

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated multilayered microfludic devices and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated multilayered microfludic devices and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated multilayered microfludic devices and methods for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3149513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.