Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material
Reexamination Certificate
1999-08-11
2001-09-04
Trinh, Michael (Department: 2822)
Semiconductor device manufacturing: process
Coating with electrically or thermally conductive material
To form ohmic contact to semiconductive material
C438S637000, C438S638000, C438S634000
Reexamination Certificate
active
06284642
ABSTRACT:
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The invention relates to the fabrication of integrated circuit devices, and more particularly, to a method for forming one or more levels of damascene structures whereby (via and contact) holes are formed at the same time that (interconnect) wire lines are formed.
(2) Description of the Prior Art
In the formation of semiconductor integrated circuits, it is common practice to form interconnect metal line structures on a number of different levels within the structure and interconnecting the various levels of wiring with contact or via openings. The first or lowest level of interconnect wires is typically formed as a first step in the process after which a second or overlying level of interconnect wires is deposited over the first level. The first level of interconnect wires is typically in contact with active regions in a semiconductor substrate but is not limited to such contact. The first level of interconnect can for instance also be in contact with a conductor that leads to other devices that form part of a larger, multi-chip structure. The two levels of metal wires are connected by openings between the two layers that are filled with metal where the openings between the two layers line up with and match contact points in one or both of the levels of metal lines.
Previously used techniques to form multi-levels of wiring apply the technique of first forming the interconnect level metal in a first plane followed by forming the overlying level of interconnect wire in a second plane. This structure typically starts with the surface of a semiconductor substrate into which active devices have been created. These active devices can include bipolar transistors, MOSFET devices, doped regions that interconnect with other regions of the device while provisions may also have been provided to make interconnects with I//O terminals in the periphery of the device. The surface into which the pattern of interconnect lines of the first plane is formed may also be an insulation layer deposited over the surface of the substrate or a layer of oxide may first have been formed on the surface of the substrate. After the layer, into which the pattern of interconnecting wires has to be created, has been defined, the interconnecting pattern itself needs to be defined. This is done using conventional photolithographic techniques whereby the openings are made (in the layer) above the points that need to be contacted in the substrate. The openings, once created, may by lined with layers of material to enhance metal adhesion (to the sidewalls of the opening), the glue or seed layer, or to prevent diffusion of materials into and from the damascene structure in subsequent processing steps, the barrier layer. For the barrier layer, a variety of materials can be used such as Ti/TiN:W (titanium/titanium nitride:tungsten), titanium-tungsten/titanium or titanium-tungsten nitride/titanium or titanium nitride or titamium nitride/titanium, tungsten, tantalum or its compounds, niobium, molybdenum. The final phase in creating the first level of interconnect lines is to fill the created openings with metal, typically aluminum, tungsten or copper, dependent on the particular application and requirements and restrictions imposed by such parameters as line width, aspect ratio of the opening, required planarity of the surface of the deposited metal and others.
This process of line formation in overlying layers of metal can be repeated in essentially the same manner as just highlighted for the first layer of interconnecting wires. This process of forming sequential layers of interconnecting levels of wire is in many instances prone to problems and limitations. The use of copper has in recent times found more application in the use of metal wires due to its low resistivity, high electromigration resistance and stress voiding resistance. Copper however exhibits the disadvantage of high diffusivity in common insulating materials such as silicon oxide and oxygen-containing polymers. This leads to, for instance, the diffusion of copper into polyimide during high temperature processing of the polyimide resulting in severe corrosion of the copper and the polyimide due to the copper combining with oxygen in the polyimide. The corrosion may result in loss of adhesion, delamination, voids, and ultimately a catastrophic failure of the component. A copper diffusion barrier is therefore often required. Furthermore, due to the fact that copper is very difficult to process by RIE, the CMP method may need to be used where copper is used as a wiring material. To polish copper at a high rate without scratching in accordance with the buried wiring formation, the copper etch rate must be raised by increasing the amount of the component responsible for copper etching contained in the polishing slurry. If the component is used in an increased amount, the etching will occur isotropically. Consequently, buried copper is etched away, causing dishing in the wiring. It is, when forming interconnect lines using copper, desirable to use methods that do not depend on patterning the copper lines using a chemical etching process since etching of copper is very difficult and is a process that is only recently being further investigated. The use of copper as a metal for interconnect wiring is further hindered by copper's susceptibility to oxidation. Conventional photoresist processing cannot be used when the copper is to be patterned into various wire shapes because the photoresist needs to be removed at the end of the process by heating it in a highly oxidized environment, such as an oxygen plasma, thereby converting it to an easily removed ash.
Further problems of forming multi-layers of interconnect lines using the methods indicated above result from the continuing trend of micro-miniaturization in the semiconductor industry. This trend leads to ever decreasing device features and with that, decreasing line width. To deposit metals into these narrow lines is a difficult process where problems of proper line profiling, voids in the deposited metal and the trapping of impurities lead to serious restraints on the manufacturing process. Where a larger number of interconnecting lines are required, the number of processing steps required to create these lines may also become excessive thereby increasing processing steps and creating potentially serious yield detractors. It is therefore desirable to use processes that combine some of the above indicated steps and create for instance via openings at the same time as or in combination with the creation of the interconnect wire pattern.
Two widely used approaches in creating metal interconnects is the use of the damascene and the dual damascene structures. The application of the Damascene process continues to gain wider acceptance, most notably in the process of copper metalization due to the difficulty of copper dry etch where the Damascene plug penetrates deep in very small, sub-half micron, Ultra Large Scale Integrated devices. Recent applications have successfully used copper as a conducting metal line, most notably in the construct of CMOS 6-layer copper metal devices.
In the formation of a damascene structure, a metal plug is first formed in a surface; this surface in most instances is the surface of a semiconductor substrate. A layer of Intra Level Dielectric (ILD) is deposited (using for instance Plasma Enhanced CVD technology with SiO
2
as a dielectric) over the surface into which trenches for metal lines are formed (using for instance Reactive Ion Etching technology).
The trenches overlay the metal plug and are filled with metal (using for instance either the CVD or a metal flow process). Planarization of this metal to the top surface of the layer of ILD completes the damascene structure. Some early damascene structures have been achieved using Reactive Ion Etching (RIE) for the process of planarization but Chemical Mechanical Planarization (CMP) is used exclusively today.
An extension of the damascene process is the dual damascene process w
Cheng Chao-Bao
Hsu Kuo-Chin
Liu Meng-Chang
Ackerman Stephen B.
Saile George O.
Taiwan Semiconductor Manufacturing Company
Trinh Michael
LandOfFree
Integrated method of damascene and borderless via process does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated method of damascene and borderless via process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated method of damascene and borderless via process will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2447996