Static information storage and retrieval – Systems using particular element – Magnetoresistive
Reexamination Certificate
2003-05-23
2004-09-28
Mai, Son (Department: 2818)
Static information storage and retrieval
Systems using particular element
Magnetoresistive
C365S171000, C365S173000
Reexamination Certificate
active
06798689
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to an integrated memory with a configuration of non-volatile memory cells and to a method for fabricating and for operating the integrated memory.
Non-volatile memories are used in many systems with discrete memory modules, the selection of the memory modules used depend on the specific requirements of the respective system. Usually, use is made both of modules containing a memory with fast reading and writing times, e.g. static random access memory (SRAM), and of more cost-effective modules with slower access but a higher integration density of the memory elements, e.g. flash memory.
In addition to other architectures of non-volatile memory, for instance ferroelectric memory (FeRAM), ferromagnetic memories (MRAM) have also been proposed for use in discrete modules, the storage in cells being achieved with the aid of the magnetoresistive effect. This exploits the fact that the electrical resistance of two ferromagnetic layers depends on the mutual orientation of a magnetic polarization of the layers. Thus, a state “0” may correspond to the electrical resistance with a parallel direction of polarization, and the state “1” can correspond to the electrical resistance with an antiparallel direction of polarization. However, the difference in the electrical resistance between the two possible orientations amounts to only 15% for giant magnetoresistive effect (GMR) elements through to 50% for tunneling magnetoresistive effect (TMR) elements.
The elements which contain two ferromagnetic layers and are isolated by a dielectric layer are fitted at the points of intersection of the mutually crossing bit lines and word or write lines, so that there is an electrical connection from the bit line via the GMR or TMR resistance to the word line. By measuring the current via the active bit line and word line, respectively, with the aid of sense amplifiers, it is possible to determine the electrical resistance and thus to determine the mutual orientation of the magnetic polarization of the ferromagnetic layers.
Depending on the embodiment of an MRAM cell, it is possible, by an additional write line which is parallel to the word line and is insulated from the ferromagnetic element or by a write line which is identical to the word line, to generate, using bit and write lines that are connected to carry current, by superposition at their crossover point, such a large magnetic field that it becomes possible to effect a rotation encompassing 180 degrees of the magnetic direction of polarization of a first variable ferromagnetic layer relative to the second ferromagnetic layer, whose magnetic orientation is fixed. If a network of bit lines which run parallel and word or write lines which run transversely with respect thereto is used analogously to the structure of conventional dynamic memories (i.e. dynamic random access memory (DRAM)), then addressing of the memory cells for reading and writing is made possible with the aid of corresponding column and row drivers.
There are essentially two possibilities for the construction of memory cells with a magneto-resistive effect. A first embodiment is disclosed e.g. by Durlam et al., titled “Nonvolatile RAM based on Magnetic Tunnel Junction Elements”, given at International Solid State Circuits Conference, IEEE, 2000, pages 130 to 131, in which case, by using a selection transistor in the memory cell, a current path from the bit line via the ferromagnetic memory element to the earth potential can be activated by the word line. For the write operation, the transistor is turned off by the word line, while a current flows through the write line. The architecture affords the advantage of a very fast access time of a few nanoseconds but cannot make use of the possibilities of very small dimensioning as a result of the ferromagnetic element, since the area occupied is determined by the significantly larger selection transistor and, as in the conventional dynamic memory (DRAM), turns out to be 8F
2
where F is the minimum feature size on the substrate.
By contrast, International Publication No. WO 99/14760 A1, corresponding to U.S. Pat. No. 6,490,190 B1, discloses an architecture of a ferromagnetic memory in which the memory element with a magnetoresistive effect is connected directly between the bit line and word line, in which case the current on the selected bit line can be evaluated by a sense amplifier without using a selection transistor. Parasitic current paths can occur, caused by a comparatively high internal resistance of the word or bit lines relative to the resistance of the memory cell with a magnetoresistive effect. Moreover, the current intensities to be measured differ only by 10 to 30% for the two states of the memory cell, so that the resistances of the ferromagnetic elements must be given very high values from the outset. Since a selection transistor is avoided in this architecture, a high integration density of the memory cells can therefore be achieved with a cell area of 4 F
2
.
However, this advantage must be weighed against the disadvantage of a long access time of 0.5-1 &mgr;s.
By assembling discrete modules containing memory cells with a magnetoresistive effect, it is possible, as in the case of electrical storage, to construct memory modules which satisfy the respective system requirements, e.g. by using both memory with a fast access time and memory with a high integration density in two discrete modules. However, the inherent disadvantages of the individual modules are also transferred to the overall system, and at the same time lead disadvantageously to considerably higher fabrication costs.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an integrated memory with a configuration of non-volatile memory cells and a method for fabricating and for operating the integrated memory that overcome the above-mentioned disadvantages of the prior art devices and methods of this general type, which has low costs for the fabrication thereof and, at the same time, enables a high integration density with fast reading and writing times.
The object is achieved by an integrated memory with a configuration of non-volatile memory cells. The memory cells include at least a first and a second memory cell with a magnetoresistive effect, which are disposed at crossover points in each case between bit lines and word lines running transversely with respect thereto. The first memory cell with a magnetoresistive effect contains a transistor which can be driven by the word line and which forms, for an access to the first memory cell with a magnetoresistive effect, with the bit line and a first memory element, a current path to a supply or earth potential. A second memory element of the second memory cell with a magnetoresistive effect is connected between a respective bit line and a respective word line.
According to the present invention, the advantageous configuration of a non-volatile memory with a fast access time and a high integration density is realized within a discrete memory module. Through a combination of elements in the integrated memory, namely the memory cells with a magnetoresistive effect with transistor and the memory cells with a magnetoresistive effect that are connected e.g. directly between the bit line and the word line, it is possible, depending on system requirements, to create flexible, fast and inexpensive memory modules which, by virtue of the integration on a discrete module, have considerably lower fabrication costs.
The two architectures used for memory cells with a magnetoresistive effect are preferably in each case equipped with dedicated sets of word and bit lines. To that end, it is then also necessary to provide corresponding sets of drivers for the memory cell arrays thus produced and also a corresponding logic for the addressing. On the other hand, a common configuration within a memory cell array is also possible. While the memory cell arrays with a magnetoresistive effect with selection transistors are generall
Möller Gerhard
Schlösser Till
Greenberg Laurence A.
Infineon - Technologies AG
Mai Son
Mayback Gregory L.
Stemer Werner H.
LandOfFree
Integrated memory with a configuration of non-volatile... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated memory with a configuration of non-volatile..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated memory with a configuration of non-volatile... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3256591