Static information storage and retrieval – Systems using particular element – Magnetoresistive
Reexamination Certificate
2001-07-03
2002-11-05
Elms, Richard (Department: 2824)
Static information storage and retrieval
Systems using particular element
Magnetoresistive
C365S200000
Reexamination Certificate
active
06477081
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to an integrated memory having memory cells with a magnetoresistive storage property. The memory cells are in each case connected between one of a plurality of column lines and one of a plurality of row lines. The column lines are connected to a sense amplifier and the row lines can in each case be connected to a terminal for a selection signal for reading a data signal of one of the memory cells or writing a data signal to one of the memory cells via the column line connected to the memory cell.
Memory cells with a magnetoresistive storage effect generally have variable-state ferromagnetic layers for storing data signals. This storage effect is generally referred to as the GMR (giant magnetoresistive) effect or TMR (tunneling magnetoresistive) effect. In this case, the electrical resistance of such a memory cell is dependent on the magnetization of the ferromagnetic layers.
Integrated memories having memory cells of this type, also referred to as MRAMs (Magnetoresistive Random Access Memory), are often of a similar structure to that of, for example, integrated memories of the DRAM (Dynamic Random Access Memory) type. Memories of this type generally have a memory cell configuration with row lines and column lines which run essentially parallel to one another, with the row lines usually running transversely with respect to the column lines.
A MRAM memory of this type is known from International Publication No. WO 99/14760. There, the memory cells are connected in each case between one of the row lines and one of the column lines and are electrically connected to the respective column line and row line. The memory cells with a magnetoresistive storage effect have in this case a higher impedance than the row lines and column lines. The row lines are in each case connected to a terminal for a selection signal for reading a data signal of one of the memory cells or writing a data signal to one of the memory cells via the column line connected to the memory cell. For the reading of a data signal of one of the memory cells, the column lines are connected to a sense amplifier. For reading, the current which can be detected on the column line is measured.
In the case of a MRAM memory of this type, there are no diodes or transistors to connect the memory cells to the respective column line for reading or writing a data signal in response to being addressed. This achieves advantages, in particular in terms of the geometrical configuration of the memory cells.
As a result of production-induced influences, such as for example process variations, or as a result of aging, it is possible that some of the memory cells have an undesired comparatively low resistance and are consequently defective. Defective memory cells of this type essentially have the effect of short-circuiting respective connected column lines and row lines. Such a short-circuit also affects other memory cells along this column line or row line. Furthermore, a short-circuit through one of the memory cells can have the effect that other memory cells which lie along affected lines can no longer be tested in a function test. When a memory with a defective memory cell is repaired, the problem cannot be rectified by replacing a single affected row line or column line, since the memory cells of the other affected line continue to be impaired in their function by the short-circuit. Furthermore, the persisting short-circuit also causes parasitic currents on other lines, possibly adversely influencing a reading or writing operation. Therefore, in this case both affected lines of a defective memory cell must be replaced.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an integrated memory which overcomes the above-mentioned disadvantages of the heretofore-known memory devices of this general type and which, in the case of a defective memory cell, which causes a short-circuit between a row line and a column line, allows a largely proper reading of data signals from or writing of data signals to the remaining memory cells.
With the foregoing and other objects in view there is provided, in accordance with the invention, an integrated memory, including:
a plurality of column lines;
a plurality of row lines;
memory cells each connected between a respective one of the column lines and a respective one of the row lines, the memory cells having a magnetoresistive storage property;
a sense amplifier connected to the column lines;
a terminal for providing a selection signal;
the row lines respectively being connectable to the terminal in order to selectively read a data signal from a selected one of the memory cells and write a data signal to the selected one of the memory cells via one of the column lines connected to the selected one of the memory cells; and
a control device controlling the sense amplifier such that at least one of the column lines not connected to the selected one of the memory cells and connected to at least one defective one of the memory cells causing a short-circuit between in each case one of the row lines and one of the column lines is electrically isolated in the sense amplifier for selectively reading and writing the data signal.
In the case of the integrated memory according to the invention, it is possible, when defective memory cells occur, causing a short-circuit between the respective connected row line and column line, to disconnect the affected column line in the sense amplifier in such a way that the corresponding connected row line can continue to be operated. The row line connected to a defective memory cell can, for example, continue to be used for normal operation or test operation of the integrated memory. Since the corresponding column line has a kind of floating state in the sense amplifier after the disconnection, it can be brought to the potential of the row line connected to the defective memory cell via the short-circuited memory cell. As a result, a reading operation or writing operation via the affected row line is no longer adversely influenced by the defective memory cell. The effort required for disconnecting the affected column line in the sense amplifier is relatively low in this case. For a possible repair, it is only necessary to replace the affected column line.
In one embodiment of the memory according to the invention, the column lines are connected to a respective driver circuit, which can be operated in a conducting state or nonconducting state. These driver circuits can be used to drive the column lines in such a way that they are electrically isolated for the reading or writing of the data signal. For this purpose, the driver circuits are operated in the nonconducting state. The respective driver circuit has, for example, switching devices in the form of transistors which are connected to the respective column line via their source-drain paths. These transistors are operated in a corresponding nonconducting state.
According to another feature of the invention, the respective driver circuit is assigned a memory unit, by which the respective driver circuit can be driven. An item of information, for example which of the column lines are in each case connected to a defective memory cell, can be stored in the respective memory unit. The respective memory unit in this case generates a corresponding control signal for the respective assigned driver circuit. The memory units have, for example, in each case an element which can be programmed electrically or can be programmed by an energy beam. The latter may be configured for example in the form of a laser fuse, which can be programmed through the use of a laser beam. The information to be stored can be permanently stored by programmable elements of this type, so that a function test for the detection of defective memory cells only has to be carried out once.
For the repair of defective memory cells, the integrated memory preferably has redundant memory cells, which are combined to form at least one redundant column line, which c
Greenberg Laurence A.
Infineon - Technologies AG
Locher Ralph E.
Nguyen Hien
Stemer Werner H.
LandOfFree
Integrated memory having memory cells with a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Integrated memory having memory cells with a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated memory having memory cells with a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2915399