Integrated circuit with a differential amplifier

Static information storage and retrieval – Read/write circuit – Differential sensing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C365S208000, C327S052000, C327S065000

Reexamination Certificate

active

06477099

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to an integrated circuit that is connected to a reference potential and has a differential amplifier with two input transistors, a load element and a power source. The input transistors are connected in parallel between the load element and the power source, and the power source has an N-type channel MOS transistor whose controlled path is connected to the input transistors and to a supply terminal of the power source. A control terminal of the MOS transistor is connected to a terminal for a potential that is positive with respect to the reference potential.
In integrated circuits, differential amplifiers are usually used in different applications. In particular, more recent generations of semiconductor memory modules have comparatively low internal supply voltages thanks to newer technologies. In such integrated circuits, differential amplifiers are used in particular for operation as input signal amplifiers, also referred to as input receivers, because they also operate as intended with comparatively low internal supply voltages.
The function of an input receiver generally relates to detecting a variable input signal and, if appropriate, amplifying it. In this respect, a differential amplifier of a basic configuration has a high input resistance, like an inverter. Differential amplifiers are used particularly in relatively new applications that have a so-called stub serial terminated logic (SSTL) interface, in particular in newer DRAM generations. Here, differential amplifiers are particularly used as so-called high-speed receivers.
The different configurations of differential amplifiers have basically the same basic circuitry of a known type. Such circuitry contains two input transistors, a power source and an active or passive load. The difference in potential of the input signals applied to the input transistors brings about a change in potential at the output of the differential amplifier. The input transistors are usually embodied using NMOS technology.
The power source of the differential amplifier is intended to have the effect of ensuring that the overall current through the two input transistors always remains constant. The power source generally used is an N-type channel MOS transistor whose drain/source path is connected to the input transistors and to a supply terminal of the power source. Because the power source of a differential amplifier particularly has the effect of a constant power source, the transistor of the power source is operated in its saturation range. So that the modulation range of the input signal is not restricted too much at one of the two input transistors, the voltage dropping across the drain/source path of the transistor should be kept as small as possible.
In order to operate the transistor in the saturation range, it is known that the condition for the voltages
V
DS
≧V
GS
−V
TH
must be fulfilled. Here, “D” stands for drain, “S” stands for source and “G” stands for gate. In previous applications, the supply terminal of the power source was usually connected to a terminal for a reference potential of the integrated circuit. Because, as described, V
DS
is relatively small, V
GS
is selected such that this voltage is insignificantly higher than the switch-on voltage V
TH
. This results in particular in the problem that when there is a predefined current across the power source and a relatively low gate-source voltage a relatively large width-length ratio of the transistor has to be selected. Because, in addition, the drain-source voltage is always higher than the reference voltage of the integrated circuit, the input signal range at the input transistors is restricted in all cases. Because the transistor of the power source is operated near to its switch-on voltage, the gate-source voltage must be carefully selected. If an excessively small one, for example, is selected, the differential amplifier circuit is, in particular, sensitive to potential fluctuations of the input signals and of the supply voltage (“noise”).
In the reference Tietze, Schenk,: Halbleiter-Schaltungstechnik [Semiconductor Circuit Technology], 11th edition, by Berlin et al: Springer, 1999, pages 361, 362, 401, 402, 419, various basic circuits of differential amplifiers are described. These each have two input transistors, a load element and a power source, the input transistors being connected in parallel between the load element and the power source. Furthermore, current mirrors with transistors that can be used as a power source for a differential amplifier are described. The differential amplifiers described can be operated with a positive supply voltage and a negative supply voltage.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an integrated circuit with a differential amplifier that overcomes the above-mentioned disadvantages of the prior art devices of this general type, in which, on the basis of the basic circuit described, the disadvantages with regard to the dimensioning of the N-type channel MOS transistor of the power source and of the operation of the differential amplifier do not occur and in which a comparatively stable supply voltage is made available when it is used in a DRAM memory circuit.
With the foregoing and other objects in view there is provided, in accordance with the invention, a combination of an integrated dynamic memory with an integrated circuit. The integrated circuit contains a differential amplifier to be connected to a reference potential. The differential amplifier is formed of a voltage source supplying a first potential which is negative with respect to the reference potential, a load element, a power source having a supply terminal, and two input transistors connected in parallel between the load element and the power source. The power source has an N-type channel MOS transistor with a control terminal and a controlled path. The controlled path has a first end connected to the input transistors and a second end connected to the supply terminal. The control terminal of the N-type channel MOS transistor is to be connected to a terminal for a second potential that is positive with respect to the reference potential. The supply terminal of the power source is connected to the voltage source for switching off cell field transistors of the integrated dynamic memory.
The object is achieved by the integrated circuit that has the differential amplifier which is connected to the reference potential in which the differential amplifier has the two input transistors, the load element and the power source. The input transistors are connected in parallel between the load element and the power source and the power source has an N-type channel MOS transistor whose controlled path is connected to the input transistors and to a supply terminal of the power source. A control terminal of the transistor is connected to a terminal for a potential that is positive with respect to the reference potential. The integrated circuit is contained in a circuit configuration of an integrated dynamic memory, and the supply terminal of the power source is connected to a voltage source in order to switch off cell field transistors of the integrated dynamic memory. The voltage source has a potential that is negative with respect to the reference potential.
The source terminal of the transistor of the power source is therefore connected to a potential that is negative with respect to the reference potential. The result of this is that when there are supply potentials and potentials of the input signals and control signals that are otherwise unchanged, the gate-source voltage is increased. As a result, the width/length ratio of the transistor can remain relatively small for a given current across the power source. Because the transistor is also no longer operated relatively close to its switch-on voltage, the sensitivity to “noise” is reduced.
The integrated circuit according to the invention can be used in a circuit configuration of an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Integrated circuit with a differential amplifier does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Integrated circuit with a differential amplifier, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Integrated circuit with a differential amplifier will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2917202

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.