Ink feed channels and heater supports for thermal ink-jet...

Etching a substrate: processes – Forming or treating thermal ink jet article

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S038000, C216S039000, C216S072000, C216S079000, C216S088000

Reexamination Certificate

active

06475402

ABSTRACT:

(2) CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable.
(3) STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
(4) REFERENCE TO AN APPENDIX
Not Applicable.
(5) BACKGROUND OF THE INVENTION
(5.1) Field of the Invention
The present invention relates generally to thermal ink-jet (“TIJ”) technology and, more specifically, to a TIJ printhead structure and method of fabrication.
(5.2) Description of the Related Art
The art of ink-jet technology is relatively well developed. Commercial products such as computer printers, graphics plotters, copiers, and facsimile machines employ ink-jet technology for producing hard copy. The basics of this technology are disclosed, for example, in various articles in the
Hewlett
-
Packard Journal,
Vol. 36, No. 5 (May 1985), Vol. 39, No. 4 (August 1988), Vol. 39, No. 5 (October 1988), Vol. 43, No. 4 (August 1992), Vol. 43, No. 6 (December 1992) and Vol. 45, No.1 (February 1994) editions. Ink-jet devices are also described by W. J. Lloyd and H. T. Taub in
Output Hardcopy [sic] Devices
, chapter 13(Ed. R. C. Durbeck and S. Sherr, Academic Press, San Diego, 1988).
A simplistic schematic of a swath-scanning inkjet pen
100
is shown in
FIG. 1
(PRIOR ART). The body of the pen
101
generally contains an ink accumulator and regulator mechanism
102
. The internal ink accumulator—or ink accumulation chamber—and associated regulator mechanism
102
are fluidically coupled
103
to an off-axis ink reservoir (not shown) in a known manner common to the state of the art. A printhead
104
element includes appropriate electrical connectors
105
(such as a tape automated bonding, “flex tape”) for transmitting signals to and from the printhead. The printhead has columns of individual nozzles
106
forming an addressable firing array
107
. The typical state of the art scanning pen printhead
104
may have two or more columns with more than one-hundred nozzles per column. The nozzle array
107
is usually subdivided into discrete subsets, known as “primitives,” which are dedicated to firing droplets of specific colorants on demand. In a thermal ink-jet pen, an ink drop generator mechanism includes a heater resistor subjacent each nozzle
106
with an ink chamber therebetween. Selectively passing current through a resistor superheats ink to a cavitation point such that an ink bubble's expansion and collapse ejects a droplet from the associated nozzle
106
.
Prior art for printhead structures and fabrication is typified by patents to Keefe et al., assigned to the common assignee herein. U.S. Pat. No. 5,278,584 shows an IMPROVED INK DELIVERY SYSTEM FOR AN INK-JET PRINTHEAD. U.S. Pat. No. 5,635,966, a continuation in part of the Keefe '584 patent, shows an EDGE FEED INK DELIVERY THERMAL INKJET PRINTHEAD STRUCTURE AND METHOD OF FABRICATION.
The ever increasing complexity and miniaturization of TIJ nozzle arrays has led to the use of silicon wafer integrated circuit technology for the fabrication of printhead structures. For the purpose of the present invention, the “frontside” of a silicon wafer, or wafer printhead die region, is that side having drop generator elements; the “backside” of a silicon wafer, or wafer printhead die region, is that the opposite planar side, having ink feed channels (also referred to simply as “trenches”) fluidically coupled by ink feed holes through the silicon wafer to the drop generator elements.
In general, prior solutions to problems of working in silicon wafer technology to fabricate ink-jet printheads have taken two general forms. The first is to use a thin oxide membrane to define ink feed holes and provide a structural support for the associated resistor heaters. This technique has problems with the thin oxide breaking or distorting or both. A second solution relies upon an inherent slower etch rate of boron doped silicon in the etch processes used for defining a backside trench; the silicon under the resistor is heavily doped with boron to a depth of five to ten microns, masking the positions of the ink feed holes and leaving those feed hole regions undoped, thereby establishing different etch rate regions of the substrate. There appears to still be a lack of consistency in the etch rate of the boron-doped silicon; undercutting of the silicon at oxide interfaces occurs.
There is a need to provide an improved support structure under TIJ ink droplet firing resistors and to provide improved structural stability for TIJ ink feed channels.
(6) BRIEF SUMMARY OF THE INVENTION
In its basic aspect, the present invention provides an ink-jet printhead fabrication process using a silicon wafer, the process including: on a first surface of the wafer, forming an array of ink-jet drop generator location trenches interspersed with ink feed hole barrier trenches; filling said trenches with at least one material having a substantially equal or greater load bearing characteristic than silicon; and forming drop generator heater elements superjacent said inkjet drop generator location trenches and ink feed holes leading from a second surface of the wafer to said first surface between said ink-jet drop generator location trenches and adjacent barrier trenches.
In another aspect, the present invention provides a thermal ink-jet printhead device including: a silicon substrate having a first surface; a plurality of ink heaters; and a support subjacent each of said heaters embedded in said first surface, said support being a material having a load bearing characteristic equal to or greater than that of said silicon substrate.
In still another aspect, the present invention provides a thermal ink-jet pen, including: a body; an ink accumulation chamber within said body; and a printhead having a plurality of ink firing nozzles in a predetermined array, wherein each of said nozzles has an associated ink heater mounted on a silicon substrate printhead structure, each heater has at least one associated ink feed hole adjacent thereto and in fluidic communication with said ink accumulation chamber, and each said heater has a printhead structure support of a material having a substantially equal or greater load bearing characteristic than the silicon substrate load bearing characteristic, and each ink feed hole having inner sidewalls formed by said printhead structure support and outer sidewalls formed by an ink feed hole support formed of said material.
Some of the advantages of the process in accordance with the present invention are: it provides a three-dimensional control for forming ink feed holes and membrane dimensions measurable and verifiable early in the wafer fabrication process; it allows wider architectural design options to solve fluid dynamics problems associated with ink-jet printheads; it provides accurate wafer frontside alignment of ink feed channels and drop generator firing resistors; and it decreases technological demands with respect to architecture tolerances.
Some advantages of the employment of this process with respect to printheads fabricated therewith are: ink-jet printhead properties that define fluidics are set and verified early in the printhead fabrication process; a high firing frequency is attainable; increased nozzle-packing density is attainable; it provides for the incorporation of more intricate features such as particle filters; smaller nozzle sizes with concomitant ink drop volume reduction are attainable; and it provides wider design flexibility with respect to a ink viscosity.
The foregoing summary is not intended to be an inclusive list of all the aspects, objects, advantages, and features of the present invention nor should any limitation on the scope of the invention be implied therefrom. This Summary is provided in accordance with the mandate of 37 C.F.R. 1.73 and M.P.E.P. 608.01(d) merely to apprise the public, and more especially those interested in the particular art to which the invention relates, of the nature of the invention in order to be of assistance in aiding ready understanding of the patent in future searches. Objects, features and advantages of the pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink feed channels and heater supports for thermal ink-jet... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink feed channels and heater supports for thermal ink-jet..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink feed channels and heater supports for thermal ink-jet... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2921556

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.