Inhibitors of copper-containing amine oxidases

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Nitrogen containing other than solely as a nitrogen in an...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S642000, C514S643000

Reexamination Certificate

active

06624202

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is in the field of medicinal chemistry and is directed to hydrazino compounds and their use as inhibitors of copper-containing amine oxidases (E.C. 1.4.3.6) and enzymes of significant identity thereto. The compounds of the present invention have therapeutic utility as drugs to treat diseases including, but not limited to, inflammatory diseases. In particular, acute and chronic inflammatory conditions or diseases such as chronic arthritis, inflammatory bowel diseases and skin dernatoses as well as diseases related to carbohydrate metabolism and to aberrations in adipocyte differentiation or function and smooth muscle cell function may be treated with the compounds.
2. Related Art
VAP-1 is a human endothelial cell adhesion molecule that has several unique properties that distinguish it from the other inflammation-related adhesion molecules. It has a unique and restricted expression pattern and mediates lymphocyte binding to vascular endothelium (Salmi, M., and Jalkanen, S.,
Science
257:1407-1409 (1992)). Inflammation induces the upregulation of VAP-1 to the surface of vascular endothelial cells mediating leukocyte entry to skin, gut and inflamed synovium (Salmi, M., and Jalkanen, S.,
Science
257:1407-1409 (1992); Salmi, M., et al.,
J. Exp. Med
178:2255-2260 (1993); Arvillomi, A., et al,
Eur. J Immunol.
26:825-833 (1996); Salmi, M., et al.,
J. Clin. Invest.
99:2165-2172 (1997); (Salmi, M., and Jalkanen, S.,
J. Exp. Med.
183:569-579 (1996);
J. Exp. Med.
186:589-600 (1997)). One of the most interesting features of VAP-1 is a catalytic extracellular domain which contains a monoamine oxidase activity (Smith, D. J., et al.,
J. Exp. Med.
188:17-27 (1998)).
The cloning and sequencing of the human VAP-1 cDNA revealed that it encodes a transmembrane protein with homology to a class of enzymes called the copper-containing amine oxidases (E.C. 1.4.3.6). Enzyme assays have shown that VAP-1 possesses a monoamine oxidase (MAO) activity which is present in the extracellular domain of the protein (Smith, D. J., et al.,
J. Exp. Med.
188:17-27 (1998)). Thus, VAP-1 is an ecto-enzyme. Analysis of the VAP-1 MAO activity showed that VAP-1 belongs to the class of membrane-bound MAO's termed semicarbazide-sensitive amine oxidases (SSAO). These are distinguished from the widely distributed mitochondrial MAO-A and B flavoproteins by amino acid sequence, cofactor, substrate specificity and sensitivity to certain inhibitors. However, certain substrates and inhibitors are common to both SSAO and MAO activities. The mammalian SSAO's can metabolize various monoamines produced endogenously or absorbed as dietary or xenobiotic substances. They act principally on primary aliphatic or aromatic monoamines such as methylamine or benzylamine (Lyles, G. A.,
Int. J Biochem. Cell Biol.
28:259-274 (1996)). Thus, VAP-1 located on the vascular endothelial cell surface can act on circulating primary monoamines with the following reaction pathway.
RNH
2
+O
2
+H
2
O→RCHO+H
2
O
2
+NH
3
The physiological substrates of VAP-1 SSAO in man have not been clearly identified however methylamine is a good substrate for VAP-1 SSAO. Methylamine is a product of various human biochemical pathways for the degradation of creatinine, sarcosine and adrenaline, and is found in various mammalian tissues and in blood. It can also be derived from the diet by gut bacterial degradation of dietary precursors. The concentration of methylamine in the blood can be increased in certain physiological and pathological situations such as diabetes. Another potential physiological substrates is aminoacetone.
VAP-1 SSAO activity has been proposed to be directly involved in the pathway of leukocyte adhesion to endothelial cells by a novel mechanism involving direct interaction with an amine substrate presented on a VAP-1 ligand expressed on the surface of a leukocyte (Salmi et al.
Immunity
, (2001)). This publication describes the direct involvement of VAP-1 SSAO activity in the process of adhesion of leukocytes to endothelium. Thus inhibitors of VAP-1 SSAO activity could be expected to reduce leukocyte adhesion in areas of inflammation and thereby reduce leukocyte trafficking into the inflamed region and therefore the inflammatory process itself.
In human clinical tissue samples expression of VAP-1 is induced at sites of inflammation. This increased level of VAP-1 can lead to increased production of H
2
O
2
generated from the action of the VAP-1 SSAO extracellular domain on monoamines present in the blood. This generation of H
2
O
2
in the localised environment of the endothelial cell could initiate other cellular events. H
2
O
2
is a known signalling molecule that can upregulate other adhesion molecules and this increased adhesion molecule expression may lead to enhanced leukocyte trafficking into areas in which VAP-1 is expressed. It also may be that other products of the VAP-1 SSAO reaction could have biological effects also contributing to the inflammatory process. Thus the products of the VAP-1 SSAO activity may be involved in an escalation of the inflammatory process which could be blocked by specific SSAO inhibitors.
VAP-1 SSAO may be involved in a number of other pathological conditions associated with an increased level of circulating amine substrates of VAP-1 SSAO. The oxidative deamination of these substrates would lead to an increase in the level of toxic aldehydes and and oxygen radicals in the local environment of the endothelial cell which could damage the cells leading to vascular damage. Increased levels of methylamine and aminoacetone have been reported in patients with Type I and Type II diabetes and it has been proposed that the vasculopathies such as retinopathy, neuropathy and nephropathy seen in late stage diabetes could be treated with specific inhibitors of SSAO activity.
Takahashi, H., et al.,
Yakugaku Zasshi
101(12):1154-1156 (1981), report the synthesis of a number of N-alkylaminoephedrines, including N-(isopropylideneamino)-ephedrine (or R,S-(+)-(2-hydroxy-1-methyl-2-phenylethyl)methylhydrazone-2-propanone):
These hydrazone compounds were synthesized to evaluate their effect on the bronchial musculature and were found not to exhibit any significant activity.
Grifantini, M., et al.,
Farmaco, Ed. Sci.
23(3):197-203 (1968), report the synthesis of several alkyl- and acyl-derivatives of N-amino-1-ephedrine and N-amino-d-pseudoephedrine having antidepressant and monoamine oxidase inhibitory properties. Among the compounds disclosed is the hydrazone erythro-(&bgr;-hydroxy-&agr;-methylphenethyl)methylhydrazone cyclohexanone, which has the following structure:
The development of specific VAP-1 SSAO inhibitors that modulate VAP-1 activity would be useful for the treatment of acute and chronic inflammatory conditions or diseases such as chronic arthritis, inflammatory bowel diseases, and skin dermatoses, as well as diseases related to carbohydrate metabolism (including diabetes and complications resulting from diabetes). In addition, aberrations in adipocyte differentiation or function and smooth muscle cell function (in particular, athersclerosis), and various vascular diseases may be suitable for treatment with VAP-1 SSAO inhibitors.
SUMMARY OF THE INVENTION
The present invention is broadly directed to the use of hydrazino compounds of Formula I or II as inhibitors of the class of copper-containing amine oxidases known as semicarbazide-sensitive amine oxidases (SSAO), including the human SSAO known as Vascular Adhesion Protein-1 (VAP-1). As VAP-1 SSAO inhibitors, compounds of the present invention can function to prevent leukocyte adhesion events mediated through SSAO activity as well as other functions of VAP-1 SSAO. Compounds of the present invention are therefore useful for treating a number of inflammatory conditions and diseases of connective tissue, skin, and the gastrointestinal, central nervous system, and pulmonary systems, including such conditions as chronic arthritis, inflammatory bo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inhibitors of copper-containing amine oxidases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inhibitors of copper-containing amine oxidases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibitors of copper-containing amine oxidases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3112903

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.