Inhibition and treatment of Hepatitis B virus and Flavivirus...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S467000, C514S569000, C514S729000, C514S935000, C549S235000, C549S320000, C549S433000, C562S466000, C568S808000

Reexamination Certificate

active

06306899

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to the anti-viral drugs such as Helioxanthin and its analogs compounds. These compounds may be used alone or in combination with other drugs for the treatment of the following: Hepatitis B virus (HBV), Hepatitis C virus (HCV), Yellow Fever, Dengue Virus, Japanese Encephalitis, West Nile virus and related flaviviruses. In addition, compounds according to the present invention can be used to prevent hepatoma secondary to virus infection as well as other infections or disease states which are secondary to the virus infection.
BACKGROUND OF THE INVENTION
Hepatitis B virus infection is a major health problem worldwide. HBV is a causative agent of both an acute and chronic form of hepatitis. More than 300 million people throughout the world are chronic carriers of HBV. Typically, the human host is unaware of infection and HBV infection leads to acute hepatitis and liver damage, abdominal pain, jaundice and elevated blood levels of certain enzymes. Additionally, HBV contributes to the formation of hepatocellular carcinoma and is second only to tobacco as a cause of human cancer. The mechanism by which HBV induces cancer is unknown, although it has been postulated that it may directly trigger tumor development or indirectly trigger tumor formation through chronic inflammation, cirrhosis and cell regeneration associated with the infection.
HBV belongs to the genus of hepadnavirus in the hepadnaviridae family. The genome of HBV consists of circular, partially double-stranded DNA of about 3200 base pairs that code for seven viral proteins. The polymerase gene completely overlaps the viral envelope genes PreS1, PreS2 and S and partially overlaps the X and core genes. The envelope of HBV consists of three proteins and their glycosylated derivatives. The three proteins, the small (S), middle (M) and large (L), are hepatitis B surface (HBs) proteins that contain the S gene sequence. Other proteins such as the MHBs contain the PreS2 sequence.
The core gene contains the nucleocapsid protein (183-185 aa) and the hepatitis B core antigen. The precore region, upstream of the core region, consists of 87 nucleotides that codes for 29 amino acids and is in phase with the core region. The first 19 amino acids of the precore region act as a signal for membrane translocation and eventual secretion of the precore gene product, the Hbe antigen.
Although a DNA virus, HBV requires reverse transcription through the formation of a (+) strand RNA intermediate. Reverse transcriptase has poor proof-reading ability and this leads to a high rate of nucleotide misincorporation; calculations suggest that this error-prone replication leads to one point replacement, deletion or insertion per 1000 to 100,000 nucleotides copied.
Additionally, other mutations in the precore, core and in the PreS and S, also give Hepatitis B virus a selective advantage in acquiring drug resistance.
The best defense to date has been vaccination. Human serum-derived vaccines, through genetic engineering, have been developed. Although the vaccine has been found effective, production has been hampered by the limited supply of human serum from chronic carriers and a long and expensive purification process. Furthermore, each batch of vaccine must be tested in chimpanzees to ensure safety. Additionally, vaccines do not help the patients already infected with the virus.
Great efforts have been made to develop clinically useful treatments for hepatitis B but they have been met with limited success. For example, interferon and several nucleoside analogs have shown relatively low cure rate of hepatitis B and they have often produced serious adverse effects. 2′,3′-dideoxycytidine (ddC) has had high toxicity on the central and peripheral nervous system. Another nucleoside analog, ara-AMP, was found to transiently suppress HBV infection but also has been shown to be extremely toxic as well.
Cyclopentyl purine derivatives have also shown anti-viral activity. The process for preparing such compositions have been disclosed in U.S. Pat. Nos. 4,999,428 and 5,015,739. Additionally, Onishi et al., in U.S. Pat. No. 5,777,116 have disclosed a method of making cyclopropane derivatives that include a xanthin-9-yl group.
Schinazi et al., in U.S. Pat. No. 5,684,010, have produced enationtiomerically pure beta-D-dioxolane nucleosides which show selective anti-hepatitis B activity. Additionally, Lin et al., in U.S. Pat. No. 5,830,881, have discovered that certain dideoxynucleoside analogs which contain a ribofuranosyl moiety having a L-configuration instead of the usual D-configuration showed potent inhibition of viral replication. However, unlike other nucleoside analogs, these analogs have shown very low toxicity to the host cells such as animal or human.
In the past, anti-HBV nucleotide analogs such as 3TC, PCMEA, amd PCV have been used in clinical trials. However, some HBV-infected patients often experience a recurrence of HBV after a period of treatment with 3TC or PCV; this recurrence is due to the emergence of viral resistance. Additionally, the 3TC-resistant HBV, for example, becomes cross-resistant to other anti-HBV nucleotide analogs.
Hostetler, in U.S. Pat. No. 5,817,638, have produced nucleoside analogs such as 2′,3′-dideoxycytosine, which are liked through a 5′ phosphate of the pentose group to selected lipids such as dioleoylphosphatidylcholine. The lipophilic nature provides an advantage over the use of the nucleoside analog alone and makes it possible to incorporate them into the lamellar structure of liposomes. This form enables them to be taken up by liver cells which harbor the hepatitis B virus.
Processes have been disclosed by Holly et al., in U.S. Pat. Nos. 5,142,051, 5,641,763 and 5,869,467 for the production of N-(2-phosphonylmethoxyethyl) and N-(3-hydroxy-2-phosphonylmethoxypropyl) derivatives of pyrimidine and purine bases. These compounds also could include a xanthin-9-yl group. These compounds are regarded as acyclic analogues of nucleosides in which the nucleoside sugar moiety is replaced by a substituted carbon chain bearing hydroxy groups.
Although the compounds developed by Holly and others have not been tested specifically against hepatitis B viruses, they have shown in-vitro anti-viral activity against other DNA viruses such as the herpes viruses. Other analogs that show anti-Hepatitis B virus activity include phosphonomethyoxymethyl purine and pyrimidine derivatives as described by Kim et al in U.S. Pat. Nos. 5,726,174 and 5,837,871.
Chang et al., on the other hand, in U.S. Pat. No. 5,929,038, have developed an anti-HBV compound that is an iridoid aglycone compound produced from the parent iridoid glycosides which are monoteropenoid compounds and are derived from medicinal plants. In addition to inhibiting HBV DNA synthesis, these compounds also protect the liver from hepatic damage isuch as that induced by carbon tetrachloride intoxication.
In the past, anti-HBV nucleotide analogs such as 3TC (L(−)SddC), PCMEA, amd PCV have been used in clinical trials. However, some HBV-infected patients often experience a recurrence of HBV after a period of treatment with 3TC or PCV; this recurrence is due to the emergence of viral resistance. Additionally, the 3TC-resistant HBV, for example, becomes cross-resistant to other anti-HBV nucleotide analogs.
Flaviviruses belong to the genus Flavivirus of the family Togaviridae. According to virus taxonomy, about 50 viruses including Hepatitis C virus (HCV), Yellow Fever virus, Dengue Virus, Japanese Encephalitis virus, West Nile virus and related flaviviruses. The viruses belonging to the genus Flavivirus are simply called flaviviruses.
The flaviviruses are agents of infectious disease and predominate in East, Southeast and South Asia and Africa, although they may be found in other parts of the world as well. Japanese encephalitis virus is the causative agent of Japanese encephalitis (JE). The mortality rate from JE is rather high and the disease brings heavy sequelae. Although found in Japan, the disease has spre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inhibition and treatment of Hepatitis B virus and Flavivirus... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inhibition and treatment of Hepatitis B virus and Flavivirus..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inhibition and treatment of Hepatitis B virus and Flavivirus... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2583750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.