Increasing the HDL level and the HDL/LDL ratio in human...

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Fat or oil is basic ingredient other than butter in emulsion...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S601000, C426S607000

Reexamination Certificate

active

06630192

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to particular fats and fat blends, and methods for their manufacture or genetic selection/engineering, and use in foods. Consumption of such fats in appropriate amounts stabilizes or lowers the low density lipoprotein cholesterol (LDL or LDL-C) concentration and increases the high density lipoprotein cholesterol (HDL or HDL-C) concentration in human serum. This invention also relates to filled dairy products and to a method for preventing the development of off-flavors in these products.
The description and references herein are provided solely to assist the understanding of the reader. None of the information or references are admitted to be prior art to the present invention.
Coronary heart disease (CHD) is the major cause of death in the USA and other affluent nations. Plasma cholesterol, more specifically the LDL/HDL ratio, is highly correlated with risk of CHD as documented by Willett and Sacks, 324 N. Eng. J. Med. 121, 1991. The accumulation of LDL in the arterial intima is thought to lead to its oxidation, which in turn results in cascading events that induce arterial occlusion and thrombosis. High concentrations of HDL appear to block LDL oxidation and reduce the atherogenic potential of LDL. Thus, dietary means which decrease the LDL/HDL ratio (or increase the HDL/LDL ratio), especially means which would increase HDL, are desirable. Perlman and Hayes, U.S. Pat. No. 5,382,442 describe modified fat compositions and methods for decreasing total serum cholesterol while simultaneously decreasing the LDL/HDL serum cholesterol ratio. This ratio decreased as both the LDL and HDL concentrations decreased. The net LDL/HDL ratio in the serum decreased only because the LDL cholesterol concentration decreased by a greater factor than serum HDL with the dietary use of a fat-oil blend which included one to ten parts by weight cholesterol-reduced animal fat containing myristic acid, and one part by weight vegetable oil containing linoleic acid.
Within the past three years several authors have collected and analyzed a large number of independent metabolic studies relating to the effect of saturated, monounsaturated, and polyunsaturated fatty acids in the diet on serum LDL and HDL cholesterol levels. These studies have included the techniques of multiple regression analysis to examine LDL and HDL levels versus dietary intake of each group of fatty acids as separate variables expressed as the percentage of dietary energy, i.e., the total daily calorie intake of individuals in the studies.
Mensink and Katan (12 Arteriosclerosis and Thrombosis 911, 1992) made the following conclusions; “Replacement of saturated by unsaturated fatty acids raised the HDL to LDL cholesterol ratio, whereas replacement by carbohydrates had no effect. Thus, under isocaloric metabolic-ward conditions the most favorable lipoprotein risk profile for coronary heart disease was achieved if saturated fatty acids were replaced with unsaturated fatty acids, with no decrease in total fat intake.” Hegsted et al. (57 Am. J. Clin. Nutr. 875, 1993), combined data from 155 human trials in which LDL and HDL cholesterol measurements were available. With regard to fatty acids and cholesterol in the diet, the authors state in their published abstract, “1) saturated fatty acids increase and are the primary determinants of serum cholesterol, 2) polyunsaturated fatty acids actively lower serum cholesterol, 3) monounsaturated fatty acids have no independent effect on serum cholesterol and 4) dietary cholesterol increases serum cholesterol and must be considered when the effects of fatty acids are evaluated. More limited data on low density lipoprotein cholesterol (LDL-C) show that changes in LDL-C roughly parallel the changes in serum cholesterol but that changes in high density lipoprotein cholesterol cannot be satisfactorily predicted from available data.” Within this cited article, Hegsted et al. show that LDL levels increase an average of 1.74 mg/dl for each 1% increase in dietary energy represented by saturated fatty acids, while LDL levels decrease an average of 0.77 mg/dl for the corresponding amount of polyunsaturated fatty acids. Referring to the possibility of predicting changes in HDL levels in the serum, these same authors state, “It does not appear possible to develop an equation that predicts changes in HDL-C satisfactorily” and, “The errors in the regression coefficients are large; hence, little reliance should be placed on the equation.” These authors calculate a very modest increase in HDL-C correlating with a dietary increase in either saturated or polyunsaturated fatty acids (0.43 mg/dl for a 1 increase in dietary energy represented by saturated fatty acids and 0.22 mg/dl for the corresponding amount of polyunsaturated fatty acids). This indicates that one would expect that for saturated fatty acids, the much smaller increase in HDL (0.43) versus LDL (1.74) per dietary energy, would typically result in a decrease in the HDL/LDL ratio as the saturated fatty acids are increased. On the other hand, the Hegsted et al. and the Mensink and Katan calculations would predict that an increase in the proportion of dietary polyunsaturated fatty acids at the expense of saturated fatty acids would increase the HDL/LDL ratio because this dietary increase caused a large decrease in LDL (approximately 2 mg/dl) and only a small proportional decrease in HDL (approximately 0.2 mg/dl). By comparison, the overall HDL/LDL serum ratios in these studies ranged from approximately 0.25 to 0.50.
Fat blends which include saturated vegetable fats in combination with polyunsaturated vegetable oils have been noted for dietary and/or cooking use. For example, Choi et al., 24(1) Lipids 45, 1989, describe cholesterol synthesis in rats with the feeding of safflower oil or linseed oil blended with palm olein in purified diets containing 10% fat. Suzuki et al.(Jpn. Kokai Tokkyo Koho JP 01, 262, 753>89, 262, 753! Oct. 19, 1989), describe the use of 40-90% natural palm oil and 60-5% natural vegetable oil in deep frying. Lim et al., (39(12) Yukagaku 1045, 1990) describe the increased oxidative stability of soybean oil blended with crude or refined palm oil or refined palm kernel oil. Murakami et al., (41 (3) Yukagahu 196, 1992) describe the feeding of soybean oil blended with an equal weight of palm stearin in diets containing 20% fat in which cholesterol metabolism was monitored in rats. Kajimoto et al., (44(6) Nippon Eiyo, Shokuryo Gakkaishi 499, 1991) describe the blending of soybean oil or rapeseed oil with palm oil, and the blending of soybean oil, rapeseed oil and palm oil to enhance the oxidative stabilities of the polyunsaturated oils. Han et al., (23 (4) Han'guk Sikp'um Kwahakhoechi 465, 1991) describe the stabilization of soybean oil against thermal and oxidative degradation by blending with an equal or greater proportion of palm oil.
The public awareness of an increased risk of cardiovascular disease associated with dietary consumption of substantial amounts of fats rich in saturated fatty acids and cholesterol has led to an overall reduction in fat intake and an increased demand for foods containing unsaturated rather than saturated fatty acids. A multiplicity of clinical studies have shown that when certain dietary levels of saturated fats are replaced by unsaturated fats, one's total serum cholesterol level decreases. Since the milkfat, i.e., butter in dairy products contains approximately 0.22%-0.25% by weight cholesterol, more than 60% saturated fatty acids, and only approximately 4% polyunsaturated fatty acids, health-conscious individuals often prefer to consume dairy products in which the milkfat content has been reduced, eliminated, or replaced with vegetable oil.
Liquid milks are divided into various product categories based upon their weight percentage fat contents. Regular whole milk contains approximately 3.25% milkfat. Based upon an 8 fluid ounce (244 g) serving size, this corresponds to 7.9-8 grams (abbreviated g) milkfat and 35 milligrams (abbreviated mg

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Increasing the HDL level and the HDL/LDL ratio in human... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Increasing the HDL level and the HDL/LDL ratio in human..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Increasing the HDL level and the HDL/LDL ratio in human... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3127826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.