Electronic digital logic circuitry – Multifunctional or programmable – Having details of setting or programming of interconnections...
Reexamination Certificate
2009-04-02
2010-06-08
Tan, Vibol (Department: 2819)
Electronic digital logic circuitry
Multifunctional or programmable
Having details of setting or programming of interconnections...
C326S041000, C326S093000, C326S047000
Reexamination Certificate
active
07733123
ABSTRACT:
An exemplary circuit for implementing conditional statements in self-timed logic circuits includes first and second logic circuits, an input circuit, an output circuit, and a pipelined routing path. The first and second logic circuits each have a self-timed input and a self-timed output. The input circuit is coupled to provide a self-timed input signal to the self-timed input of a selected one of the first or second logic circuits based on the value of a control signal, and is further coupled to output a self-timed select signal. The output circuit is coupled to receive the self-timed output from the first logic circuit and the self-timed output from the second logic circuit, and to output a selected one of the self-timed outputs based on a value of the self-timed select signal. The pipelined routing path routes the self-timed select signal from the input circuit to the output circuit.
REFERENCES:
patent: 5208491 (1993-05-01), Ebeling et al.
patent: 5367209 (1994-11-01), Hauck et al.
patent: 5513132 (1996-04-01), Williams
patent: 5999961 (1999-12-01), Manohar et al.
patent: 6140836 (2000-10-01), Fujii et al.
patent: 6150838 (2000-11-01), Wittig et al.
patent: 6184712 (2001-02-01), Wittig et al.
patent: 6208163 (2001-03-01), Wittig et al.
patent: 6225827 (2001-05-01), Fujii et al.
patent: 6308229 (2001-10-01), Masteller
patent: 6320418 (2001-11-01), Fujii et al.
patent: 6369614 (2002-04-01), Ridgway
patent: 6476643 (2002-11-01), Hugues et al.
patent: 6486709 (2002-11-01), Sutherland et al.
patent: 6522170 (2003-02-01), Durham et al.
patent: 6531897 (2003-03-01), Milshtein et al.
patent: 6590424 (2003-07-01), Singh et al.
patent: 6708193 (2004-03-01), Zeng
patent: 6850092 (2005-02-01), Chelcea et al.
patent: 6949954 (2005-09-01), Nystrom et al.
patent: 6958627 (2005-10-01), Singh et al.
patent: 6959315 (2005-10-01), Chren, Jr.
patent: 6990510 (2006-01-01), Friend et al.
patent: 7050324 (2006-05-01), Cummings et al.
patent: 7053665 (2006-05-01), Singh et al.
patent: 7157934 (2007-01-01), Teifel et al.
patent: 7196543 (2007-03-01), Young et al.
patent: 7202698 (2007-04-01), Bauer et al.
patent: 7274211 (2007-09-01), Simkins et al.
patent: 7467175 (2008-12-01), Simkins et al.
patent: 7467177 (2008-12-01), Simkins et al.
patent: 7472155 (2008-12-01), Simkins et al.
patent: 7480690 (2009-01-01), Simkins et al.
patent: 7504851 (2009-03-01), Manohar et al.
patent: 7505304 (2009-03-01), Manohar et al.
patent: 2005/0144210 (2005-06-01), Simkins et al.
patent: 2006/0190516 (2006-08-01), Simkins et al.
patent: 2006/0195496 (2006-08-01), Vadi et al.
patent: 2006/0206557 (2006-09-01), Wong et al.
patent: 2006/0212499 (2006-09-01), New et al.
patent: 2006/0230092 (2006-10-01), Ching et al.
patent: 2006/0230093 (2006-10-01), New et al.
patent: 2006/0230094 (2006-10-01), Simkins et al.
patent: 2006/0230095 (2006-10-01), Simkins et al.
patent: 2006/0230096 (2006-10-01), Thendean et al.
patent: 2006/0288069 (2006-12-01), Simkins et al.
patent: 2006/0288070 (2006-12-01), Vadi et al.
patent: 2007/0256038 (2007-11-01), Manohar
patent: 2008/0168407 (2008-07-01), Manohar
U.S. Appl. No. 12/417,007, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,010, filed Apr. 2, 2009, Young.
U.S. Appl. No. 12/417,012, filed Apr. 2, 2009, Young.
U.S. Appl. No. 12/417,013, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,015, filed Apr. 2, 2009, Young.
U.S. Appl. No. 12/417,018, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,020, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,023, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,024, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,033, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,036, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,040, filed Apr. 2, 2009, Gaide et al.
U.S. Appl. No. 12/417,043, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,046, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,048, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,051, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/417,054, filed Apr. 2, 2009, Young et al.
U.S. Appl. No. 12/174,905, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,926, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,945, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,956, filed Jul. 17, 2008, Young.
U.S. Appl. No. 12/174,972, filed Jul. 17, 2008, Young et al.
Achronix Semiconductor Corp.,Introduction to Achronix FPGAs, WP001 Rev. 1.6, Aug. 7, 2008, pp. 1-7, available from Achronix Semiconductor Corp., San Jose, California, USA.
Achronix Semiconductor Corp.,Speedster FPGA Family, PB001 v3.5, copyright 2008, pp. 1-2, available from Achronix Semiconductor Corp., San Jose, California, USA.
Asato, Creighton et al., “A Data-Path Multiplier with Automatic Insertion of Pipeline Stages,”IEEE Journal of Solid-State Circuits, Apr. 1990, pp. 383-387, vol. 25, No. 2.
Borriello, F. et al., “The Triptych FPGA Architecture,”IEEE Transactions on Very Large Scale Integration(VLSI)Systems, Dec. 1990, pp. 491-501, vol. 3, No. 4.
Callaway, Thomas K., “Optimizing Arithmetic Elements for Signal Processing,”Proc. of the 1992 Workshop on VLSI Signal Processing, Oct. 28-30, 1992, vol. V, pp. 99-100, Napa Valley, California, USA.
Habibi, I. et al., “Fast Multipliers,”IEEE Transactions on Computers, Feb. 1970, pp. 153-157, vol. C-19, Issue 2.
Halfhill, Tom, “Ambric's New Parallel Processor,”Microprocessor Report, Oct. 10, 2006, pp. 1-9, available from In-Stat, 2055 Gateway Place, San Jose, California, USA, or http;//www.mpronline.com.
Hauck, Scott et al., “Montage: An FPGA for Synchronous and Asynchronous Circuits,”Field-Programmable Gate Arrays: Architecture and Tools for Rapid Prototyping, 1999, pp. 44-51, publ. by Springer Verlag, Berlin, Germany.
Hauck, Scott et al., “An FPGA for Implementing Asynchronous Circuits,”IEEE Design and Test of Computers, Fall 1994, pp. 60-69, vol. 11, No. 3.
Hauck, Scott, “Asynchronous Design Methodologies: An Overview,”Proc. of the IEEE, Jan. 1995, pp. 69-93, vol. 83, No. 1.
Hauser, John,The Garp Architecture, Oct. 1997, pp. 1-56, University of California at Berkeley, USA.
Huang, Randy,Hardware-Assisted Fast Routing for Runtime Reconfigurable Computing, Fall 2004, pp. 1-43, dissertation submitted to University of California at Berkeley, USA.
Jain, Surendra K. et al., “Efficient Semisystolic Architectures for Finite-Field Arithmetic,”IEEE Transactions on Very Large Scale Integration(VLSI)Systems, Mar. 1998, pp. 101-113, vol. 6, No. 1.
Maden, B. et al., “Parallel Architectures for High Speed Multipliers,”Proc. of the 1989 IEEE International Symposium on Circuits and Systems, May 8-11, 1989, pp. 142-145, Portland, Oregon.
Martin, Alain et al., “The Design of an Asynchronous Microprocessor,”Proc. Decennial Caltech Conference on VLSI, Mar. 20-22, 1989, pp. 1-23.
Meier, Pascal C. H. et al., “Exploring Multiplier Architecture and Layout for Low Power,”Proc. of the 1996 IEEE Custom Integrated Circuits Conference, May 5-8, 1996, pp. 513-516.
Muhammad, Khurram et al., “Switching Characteristics of Generalized Array Multiplier Architectures and their Applications to Low Power Design,”Proc. of the 1999 IEEE International Conference on Computer Design, Oct. 10-13, 1999, pp. 230-235, Austin, Texas, USA.
Panato, Alex et al., “Design of Very Deep Pipelined Multipliers for FPGAs,”Proc. of the Design, Automation and Test in Europe Conference and Exhibition Designers' Forum, Feb. 16-20, 2004, pp. 52-57, vol. 3, Paris, France.
Payne, R., “Asynchronous FPGA Architecture,”IEE Proc.-Comput. Digit. Tech., Sep. 1996, pp. 282-286, vol. 143, No. 5.
Sparso, J.,Asynchronous Circuit Design—A Tutorial, copyright 2006, pp. 1-179, available from the Technical University of Denmark, Kgs. Lyngby, Denmark.
Teifel, John et al., “Highly Pipelined Asynchronous FPGAs,”Proc. of the 2004 ACM-SIGDA International Symposium on Field Programma
Gaide Brian C.
Young Steven P.
Cartier Lois D.
Tan Vibol
XILINX Inc.
LandOfFree
Implementing conditional statements in self-timed logic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Implementing conditional statements in self-timed logic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Implementing conditional statements in self-timed logic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4188454