Impeller for molten metal pump with reduced clogging

Rotary kinetic fluid motors or pumps – Working fluid passage or distributing means associated with... – Specific casing or vane material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S206000, C416S181000

Reexamination Certificate

active

06524066

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to impellers and to pumps for pumping molten metal which employ the impellers.
BACKGROUND OF THE INVENTION
Pumps used for pumping molten metal typically include a motor carried by a motor mount, a shaft connected to the motor at one end, and an impeller connected to the other end of the shaft. Such pumps may also include a base with an impeller chamber, the impeller being rotatable in the impeller chamber. Support members extend between the motor mount and the base and may include a shaft sleeve surrounding the shaft, support posts, and a tubular riser. An optional volute member may be employed in the impeller chamber. Pumps are designed with shaft bearings, impeller bearings and with bearings in the base that surround these bearings to avoid damage of the shaft and impeller due to contact with the shaft sleeve or base. The shaft, impeller, and support members for such pumps are immersed in molten metals such as aluminum, magnesium, copper, iron and alloys thereof. The pump components that contact the molten metal are composed of a refractory material, for example, graphite or silicon carbide.
Pumps commonly used to pump molten metal may be a transfer pump having a top discharge or a circulation pump having a bottom discharge, as disclosed in the publication “H.T.S. Pump Equation for the Eighties” by High Temperature Systems, Inc., which is incorporated herein by reference in its entirety.
One problem that such pumps encounter is that they may be damaged by solid impurities contained in the molten metal including chunks of refractory brick and metal oxides (e.g. aluminum oxides). If a piece of hard refractory material becomes jammed in the impeller chamber it may destroy the impeller or shaft, and result in the expense of replacing these components. Chunks of refractory material such as brick with a higher specific gravity than the metal are disposed at the bottom of the vessel. Aluminum oxides with a lower specific gravity than the molten metal rise to the surface of the bath. Refractory material that has a specific gravity approximating that of the molten metal may be suspended in the bath. Refractory impurities in the molten metal are also a problem since, if not removed, they result in poor castings of the metal and potentially defective parts. Removing impurities from the molten metal bath is a hazardous process. A long steel paddle with an end that is in the shape of a perforated spoon is used to remove the impurities. To remove impurities with the paddle, workers need to come close to the molten metal at an area where temperatures may exceed 120 degrees Celsius. Although workers wear protective gear, they may be injured by splatters of metal. At the least, workers face a difficult task in removing the impurities, which they carry out in a two-step process, spooning the material upward from the bottom of the vessel and skimming the material from the surface. Each step typically lasts about 10-15 minutes. Removing the material from the bottom is carried out at least once a day and skimming is carried out at least once every eight hours. Removing impurities from the molten metal is a hazardous, costly, but necessary, process using traditional pump and impeller designs.
A second main design concern with a molten metal pump is clogging. Any impeller with an internal path for molten metal travel is susceptible to clogging, caused by solid pieces becoming lodged in the impeller and between the impeller and base. As mentioned, clogging can cause damage to the impeller and generate expensive down-time and repairs. Some impeller designs attempt to solve this problem with specifically designed passages. A passage with an entrance less in diameter than the exit may help to reduce clogging, as alleged in U.S. Pat. No. 5,785,494 to Vild. Particles which are small enough to enter the entrance to the passage in theory pass easily through the exit of the passage.
A third main design concern with a molten metal pump is efficiency. The geometric design of a pump impeller primarily defines the fluid dynamic characteristics of the pump. The impellers of the U.S. Pat. No. 5,785,494 which have internal passages wherein the entrance diameter of each passage is less in diameter than the exit diameter, have a design which results in losses in pump efficiency and higher operating costs. Internal passages of such impellers are configured to permit travel along a direction of the pump axis and then in a radial direction. Despite reducing clogging, impellers of this design may suffer significant efficiency losses.
There is a need for an impeller and pump for pumping molten metal not prone to clogging which offer high efficiency operation, low maintenance cost, and safe operating conditions for personnel.
SUMMARY OF THE INVENTION
The present invention is directed to a pump for pumping molten metal with an impeller. One aspect of the invention utilizes an impeller comprising internal molten metal passages which are configured to increase the efficiency of the impeller. The travel of molten metal through the passages is at an angle to the central rotational axis of the impeller. The geometry of the passages further prevents clogging. The impeller may include optional stirrer passages which are configured and arranged to enable the impeller to cause solid matter in the molten metal to move toward an upper surface of the bath.
As defined herein, the term passage means a tunnel in which the flow of molten metal may be controlled so as to travel along a defined, relatively narrow path. Vanes are defined as discrete surfaces of an impeller, extending from near a lower portion of the impeller along its rotational axis to near an upper portion of the impeller, which do work to move molten metal when the impeller is rotated. Cavities are defined herein as the regions between adjacent vanes and have a height which is much greater than the largest cross-sectional area of the impeller passages.
In general, the present invention is directed to pumps for pumping molten metal including a motor and a shaft having one end connected to the motor. An impeller is connected to the other end of the shaft which extends along a longitudinal axis, the impeller being constructed in accordance with the present invention. A base has a chamber in which the impeller is rotatable.
One embodiment of the present invention is directed to an impeller made of a non-metallic, heat resistant material comprising a body having a generally cylindrical shape. The impeller includes a central rotational axis, and first and second generally planar end faces extending transverse to the central axis. A side wall extends between the first and second faces. A plurality of passages have inlets circumferentially spaced apart from each other on the first face, and outlets at the side wall. Connecting portions of the passages extend between the inlets and the outlets transverse to the central axis.
More specifically, each passage extends at an angle to the central axis along substantially its entire length and perimeter. More preferably, the side surface of each passage intersects the impeller sidewall at a downward angle relative to an axis extending radially from the central axis. The angles of each passage to the central axis are intended to provide the impeller with a high operating efficiency. The passages are preferably reverse pitched relative to a direction of rotation of the impeller.
The impeller may include stirrer passages in one of the faces circumferentially spaced apart from each other. The stirrer passages are configured and arranged to enable the impeller to cause solid matter in the molten metal to move toward an upper surface of the bath. Each stirrer passage extends at an angle to the central axis along substantially its entire length and perimeter. The stirrer passages in the cylindrical bodied impeller may be enlarged to have a cross-sectional area approximating that of the other passages. The stirrer passages thus function as infeed passages for the molten metal and the pump may be re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Impeller for molten metal pump with reduced clogging does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Impeller for molten metal pump with reduced clogging, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Impeller for molten metal pump with reduced clogging will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.