Human language translation of patient session information...

Surgery – Miscellaneous – Devices placed entirely within body and means used therewith

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000, C607S030000, C715S252000, C715S252000

Reexamination Certificate

active

06644322

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
Reference is hereby made to commonly assigned co-pending U.S. patent application Ser. No. 09/358,081 filed Jul. 21, 1999, for A SYSTEM AND METHOD FOR TRANSFERRING INFORMATION RELATING TO AN IMPLANTABLE MEDICAL DEVICE TO A REMOTE LOCATION in the names of Jack P. Krichen and James David Webb
1. Field of the Invention
The present invention relates to a system for retrieving stored Patient Session Information from an implantable medical device (IMD), and more particularly to such a system formatting the Patient Session Information in an XML format enabling translation of the XML formatted Patient Session Information into a human language understandable to a health care provider through the use of human language stylesheets applied to the XML formatted Patient Session Information.
2. Background of the Invention
Many types of IMDs have been developed for monitoring a medical condition and/or providing a therapy to a patient over the years. Such IMDs include electrical stimulation devices for stimulating body organs and tissue to evoke a response for enhancing a body function or to control pain and drug delivery devices for releasing a drug bolus at a selected site. Other more passive IMDs have been developed for simply monitoring a patient's condition.
Chronically implanted cardiovascular IMDs for monitoring cardiovascular conditions and providing therapies for treating cardiac arrhythmias have vastly improved patient's quality of life as well as reduced mortality in patient's susceptible to sudden death due to intractable, life threatening tachyarrhythmias. Patients are allowed the freedom from hospital or home confinement or bed rest as IMD technology has grown more sophisticated with capabilities to diagnose and treat a greater range of patient conditions, including otherwise life threatening conditions. The resulting improved patient mobility is a quality of life rationale for implanting such IMDs. However, the improved mobility brings with it the need to maintain the ability to communicate with the IMD for a variety of reasons.
Early in the development of cardiac pacemakers, patient follow-up to monitor pacemaker operation was facilitated by telephonic transmissions of skin surface ECGs in real time to a physician's office employing such systems as the MEDTRONIC® TeleTrace® ECG transmitter. Over time, various patient worn, ambulatory ECG and device monitors have been developed for providing ECG data for analysis of cardiac arrhythmias. At the same time, IMDs were designed to be programmable in operating mode and parameters employing “telemetry” transceivers in the IMD and an external programmer.
In the case of current technology arrhythmia control devices, e.g. multi-programmable, cardiac pacemakers and implantable-cardioverter-defibrillators (ICDs), a relatively wide range of device operating modes and parameters are remotely programmable to condition the device to diagnose one or more cardiac arrhythmias and deliver an appropriate therapy. In cardiac pacemakers, the pacing rate in one or both heart chambers is governed by algorithms that process the underlying cardiac rhythm as well as physiologic conditions, e.g. patient activity level and other measured variables, to arrive at a suitable pacing rate. The pacemaker operating modes and the algorithm for establishing the appropriate pacing rate are programmed into internal memory by accessing the implanted pacemaker's telemetry transceiver with an external programmer during a downlink telemetry transmission. Similarly, with ICDs, the diagnosis of a tachyarrhythmia requiring delivery of a treatment therapy and the therapies to be delivered are governed by operating modes and algorithm parameters that may be programmed into device memory using such a programmer.
Moreover, such IMDs have the capability to process the patient's electrogram (EGM) and any measured physiological conditions employed in the diagnosis and to store the data, particularly such data that is related to a detected arrhythmic episode satisfying the criteria for treatment, for subsequent telemetry out or uplink telemetry on interrogation of the device memory by the external programmer. For example, the Medtronic® CHRONICLE® IHM implantable heart monitor senses blood pressure within a heart chamber and the EGM of the heart using an EGM and pressure sensing lead of the type disclosed in commonly assigned U.S. Pat. No. 5,564,434. Such implantable monitors when implanted in patients suffering from cardiac arrhythmias or heart failure accumulate date and time stamped data that can be of use in determining the condition of the heart over an extended period of time and while the patient is engaged in daily activities. The telemetered out data is analyzed and may be employed to establish or refine the operating modes and parameters of the device operating algorithms by reprogramming in the corresponding operating mode or parameter data.
A wide variety of programming and interrogation techniques have been devised over the years. When programming techniques were first devised, the paramount concerns addressed related to patient safety. Safeguards were built in to address the concern that the patient could be put at risk of inadvertent mis-programming of the IMD, e.g. programming too high a rate for a pacemaker or programming the pacing or sensing functions off, by stray electromagnetic fields. For this reason, and in order to avoid high current consumption that would shorten the IMD life, telemetry operating range was extremely limited. In systems continuing to the present time, downlink telemetry has required application of a magnetic field at the patient's skin over the IMD to close a reed switch while RF programming or interrogating commands are generated to be received by the IMD transceiver. The programming or interrogating commands are decoded and stored in memory or used to trigger uplink telemetry of stored data and operating modes and parameters by the IMD transceiver.
Examples of such medical device programmers include the Medtronic® Model 9760 pacemaker programmer and the Model 9790 universal programmer for bradycardia pacemakers and tachyarrhythmia devices described in U.S. Pat. Nos. 5,372,607, 5,345,362, and 5,350,411.
As mentioned above, one of the rationales and attributes of IMDs of the type described is that the patient is allowed to be ambulatory while his/her medical condition is monitored and/or treated by the IMD. As a safety precaution, programmers capable of programming all the operating modes or functions of the IMD and for initiating interrogation through the telemetry system are generally not provided to the patients. Patients are periodically examined and device interrogation is conducted by the physician using the external programmer during scheduled follow-up visits to the physician's office or clinic. This limits the frequency of monitoring and may require certain patients to remain within easy reach of the physician's office in case of an emergency.
Such emergency conditions, e.g. device failure to deliver a therapy when required, physiologic variable changes resulting in inability of the device to effectively treat the patient, accidents unrelated to the patient's condition being treated, other illnesses or transient problems, etc., may arise unexpectedly and cause a patient to require treatment by a physician unfamiliar with the IMD or the patient's medical history. Perhaps, for this reason or simply for convenience, it has been proposed in the above-referenced '380 patent to store patient data (listed in Table V thereof) in memory in the IMD that can be interrogated and retrieved by telemetry using a compatible programmer. The '380 patent also describes other types of stored data and the storage of operating and control algorithms in bytes in RAM. A comprehensive listing of data stored in memory in a rate-responsive cardiac pacemaker also appears in U.S. Pat. No. 5,330,513 also incorporated herein by reference in its entirety.
Patien

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human language translation of patient session information... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human language translation of patient session information..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human language translation of patient session information... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131977

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.