Imidazolidine derivatives, their preparation, their use and...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S389000, C546S274400, C548S319500

Reexamination Certificate

active

06680333

ABSTRACT:

This application claims priority to German Patent Application 10111877.5, filed Mar. 10, 2001, which is hereby incorporated by reference, in their entirety. All references cited below, including patents, patent applications and scientific journals and books also are herein incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION
1. Field of Invention
This invention relates to novel imidazolidine derivatives, their preparation, their use and pharmaceutical preparations comprising them.
2. Description of Related Art
The integrins are a group of adhesion receptors, which play an important role in cell-cell-binding and cell-extracellular matrix-binding processes. They have an &agr;&bgr;-heterodimeric structure and exhibit a wide cellular distribution and a high extent of evolutive conservation. The integrins include, for example, the fibrinogen receptor on platelets, which interacts especially with the RGD sequence of fibrinogen, or the vitronectin receptor on osteoclasts, which interacts especially with the RGD sequence of vitronectin or of osteopontin. The integrins are divided into three major groups, the &bgr;2 subfamily containing the representatives LFA-1, Mac-1 and p150/95, which are responsible in particular for cell-cell interactions of the immune system, and the subfamilies &bgr;1 and &bgr;3, whose representatives mainly mediate cell adhesion to components of the extracellular matrix (Ruoslahti,
Annu. Rev. Biochem.,
57:375 (1988)). The integrins of the &bgr;1 subfamily, also called VLA proteins (very late (activation) antigen), include at least six receptors, which interact specifically with fibronectin, collagen and/or laminin as ligands. Within the VLA family, the integrin VLA-4 (&agr;4&bgr;1) is atypical insofar as it is mainly restricted to lymphoid and myeloid cells and is responsible in these for cell-cell interactions with a large number of other cells. VLA-4 mediates, for example, the interactions of T and B lymphocytes with the heparin II-binding fragment of human plasma fibronectin (FN). The binding of VLA-4 with the heparin II-binding fragment of the plasma fibronectin is based especially on an interaction with an LDVP sequence. In contrast to the fibrinogen or vitronectin receptor, VLA-4 is not a typical RGD-binding integrin (Kilger and Holzmann,
J. Mol. Meth.,
73:347 (1995)).
The leukocytes circulating in the blood normally exhibit only a low affinity for the vascular endothelial cells, which line the blood vessels. Cytokines, which are released from inflamed tissue, cause the activation of endothelial cells and thus, the expression of a large number of cell surface antigens. These include, for example, the adhesion molecules ELAM-1 (endothelial cell adhesion molecule-1; also designated as E-selectin), which, inter alia, binds neutrophils, ICAM-1 (intercellular adhesion molecule-1), which interacts with LFA-1 (leukocyte function-associated antigen 1) on leukocytes, and VCAM-1 (vascular cell adhesion molecule-1), which binds various leukocytes, inter alia lymphocytes (Osborn et al.,
Cell,
59:1203 (1989)). VCAM-1 is, like ICAM-1, a member of the immunoglobulin gene superfamily. VCAM-1 (first known as INCAM-110) was identified as an adhesion molecule, which is induced on endothelial cells by inflammatory cytokines, such as TNF and IL-1 and lipopolysaccharides (LPS). Elices et al.,
Cell,
60:577 (1990) showed that VLA-4 and VCAM-1 form a receptor-ligand pair which mediates the attachment of lymphocytes to activated endothelium. The binding of VCAM-1 to VLA-4 does not take place due to an interaction of the VLA-4 with an RGD sequence, such a sequence is not contained in VCAM-1 (Bergelson et al.,
Current Biology,
5:615 (1995)). In addition, VLA-4 occurs, however, on other leukocytes, and the adhesion of leukocytes other than lymphocytes is also mediated via the VCAM-1/VLA-4 adhesion mechanism. VLA-4 thus represents an individual example of a &bgr;1-integrin receptor which, via the ligands VCAM-1 and fibronectin, plays an important role both in cell-cell interactions and in cell-extracellular matrix interactions.
The cytokine-induced adhesion molecules play an important role in the recruitment of leukocytes into extravascular tissue regions. Leukocytes are recruited into inflammatory tissue regions by cell adhesion molecules, which are expressed on the surface of endothelial cells, and serve as ligands for leukocyte cell surface proteins or protein complexes (receptors) (the terms ligand and receptor also can be used vice versa). Leukocytes from blood must first adhere to endothelial cells before they can migrate into the synovium. Since VCAM-1 binds to cells, which carry the integrin VLA-4 (&agr;4&bgr;1), such as eosinophils, T and B lymphocytes, monocytes or neutrophils, it and the VCAM-1/VLA-4 mechanism have the function of recruiting cells of this type from the bloodstream into areas of infection and inflammatory foci (Elices et al.,
Cell,
60:577 (1990); Osborn,
Cell,
62:3 (1990); Issekutz et al.,
J. Exp. Med.,
183:2175 (1996)).
The VCAM-1/VLA-4 adhesion mechanism has been connected with a number of physiological and pathological processes. Apart from by cytokine-induced endothelium, VCAM-1 is additionally expressed, inter alia, by the following cells: myoblasts, lymphoid dendritic cells and tissue macrophages, rheumatoid synovium, cytokine-stimulated neural cells, parietal epithelial cells of Bowman's capsule, the renal tubular epithelium, inflamed tissue during heart and kidney transplant rejection, and by intestinal tissue in graft versus host disease. VCAM-1 is also found to be expressed on those tissue areas of the arterial endothelium, which correspond to early atherosclerotic plaques of a rabbit model. In addition, VCAM-1 is expressed on follicular dendritic cells of human lymph nodes and is found on stroma cells of the bone marrow, for example in the mouse. The latter finding points to a function of VCAM-1 in B-cell development. Apart from on cells of hematopoetic origin, VLA-4 is also found, for example, on melanoma cell lines, and the VCAM-1/VLA-4 adhesion mechanism is connected with the metastasis of such tumors (Rice et al.,
Science,
246:1303 (1989)).
The main form, wherein VCAM-1 occurs in vivo on endothelial cells and which is the dominant form in vivo is designated as VCAM-7D and carries seven immunoglobulin domains. The domains 4, 5 and 6 are similar in their amino acid sequences to the domains 1, 2 and 3. In a further form consisting of six domains, designated here as VCAM-6D, the fourth domain is removed by alternative splicing. VCAM-6D can also bind VLA-4-expressing cells.
Further details concerning VLA-4, VCAM-1, integrins and adhesion proteins are found, for example, in the articles by Kilger and Holzmann,
J. Mol. Meth.,
73:347 (1995); Elices, Cell Adhesion in Human Disease, Wiley, Chichester 1995, p. 79; Kuijpers,
Springer Semin. Immunopathol.,
16:379 (1995).
On account of the role of the VCAM-1/VLA-4 mechanism in cell adhesion processes, which are of importance, for example, in infections, inflammation or atherosclerosis, it has been attempted by means of interventions in these adhesion processes to control disorders, in particular, for example, inflammations (Osborn et al.,
Cell,
59:1203 (1989)). A method of doing this is the use of monoclonal antibodies which are directed against VLA-4. Monoclonal antibodies (mABs) of this type, which as VLA-4 antagonists block the interaction between VCAM-1 and VLA-4, are known. Thus, for example, the anti-VLA-4 mABs HP2/1 and HP1/3 inhibit the attachment of VLA-4-expressing Ramos cells (B-cell-like cells) to human umbilical cord endothelial cells and to VCAM-1-transfected COS cells. Likewise, the anti-VCAM-1 mAB 4B9 inhibits the adhesion of Ramos cells, Jurkat cells (T-cell-like cells) and HL60 cells (granulocyte-like cells) to COS cells transfected with genetic constructs which cause VCAM-6D and VCAM-7D to be expressed. In vitro data with antibodies which are directed against the &agr;4 subunit of VLA-4 show that the adhesion of lymphocytes to synovial end

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Imidazolidine derivatives, their preparation, their use and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Imidazolidine derivatives, their preparation, their use and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Imidazolidine derivatives, their preparation, their use and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214157

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.