Multi-amine compound primers for bonding of polyolefins with...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S331200, C106S287300, C427S412300, C564S512000

Reexamination Certificate

active

06673192

ABSTRACT:

FIELD OF THE INVENTION
The present invention pertains to cyanoacrylate adhesives which are cured using an activator compound having multiple amine functional groups thereon (a “multi-amine”), to the cured products thereof and to novel multi-amine activator compounds. The invention also pertains to a method of bonding substrates, especially nonpolar substrates such as polyolefins, using cyanoacrylate adhesives activated with certain multi-amine compounds, to bonded assemblies produced thereby.
BACKGROUND OF THE INVENTION
Compounds with a variety of highly branched architectures, such as “cascade,” “dendrimer,” “hyperbranched” and “comb-like,” architectures, are known. As used herein, the terms “multi-amine cascade compounds,” “multi-amine dendrimers,” “multi-amine hyperbranched compounds” and “multi-amine comb-like compounds” refer to compounds having such branched architectures in which branching occurs via tertiary amine groups.
Cascade molecules are high molecular weight macromolecules with a very unique continuously branching structure emanating from a core unit. Formulae are characterized as having a geometrically increasing number of monomer derived branch units in each “generation” (the core being assigned generation 0, i.e. G0, and successive generations numbered sequentially, i.e. G1, G2, G3, etc). Idealized, such compounds are substantially monodisperse with all of the terminal groups being equidistant (measured through the chained bonds) from the core. However, frequently a given synthetic route will produce a distribution of macromolecules having branches of different lengths.
E. Buhleier, W. Wehner and F. Vögtle, “‘Cascade’-and ‘Nonskid-Chain-like’ Synthesis of Molecular Cavity Topologies,”
Synthesis
, 1978, pp 155-158, (incorporated herein by reference) reports that cascade poly(alkyleneamine) compounds may be obtained from Michael addition of acrylonitrile to a monoamine or diamine core molecule such as phenylmethyl amine and ethylenediamine, 1, 3,-di-(methylamino)benzene or 1,6-di(methylamino)pyridine, respectively, followed by reduction of the terminal nitrile groups to primary amine groups. Successive generations of such compounds, each increasing the number of branches on the molecule, are produced by repeating the Michael addition and nitrile reduction reactions on the previous generation product.
Multi-amine dendrimers, which may be considered to be substantially monodisperse cascade compounds, often with a generally spheroidal morphology may be prepared in a number of ways. In U.S. Pat. No. 5,610,268, incorporated herein by reference, poly(alkyleneamine) dendrimers are obtained by Michael additions of acrylonitrile or similar compounds to an active hydrogen functional core molecule such as 1,4-butanediamine, in like manner to the process of the E. Buhleier, W. Wehner and F. Vögtle paper discussed above. Generation numbers of three or more are described in this patent.
Poly(alkylester) dendrimers branching out from tertiary amino groups are described in Coleshill, A., et al,
Polymer Preprints
, 38(1) 135 (4/1997), (also incorporated herein by reference.) In this reference the branch units are derived from 2-(di-(t-butyldimethylsilyloxyethyl))aminoacetic acid monomer. The core is a polyol such as 1,4-dihydroxybenzene or 1,4-butanediol. The first generation dendrimer is prepared by esterification reaction between the core hydroxy groups and monomer acid group, followed by removal of protecting t-butyldimethylsilyl groups to give the multi-amine dendrimer having terminal hydroxyl groups. Successive esterification reactions of the dendrimer with monomer acid followed by deprotection of the t-butyldimethylsilyl groups of the monomer give successive generations of this multi-amine dendrimer.
Poly(alkylamide) dendrimers branching out from tertiary amino groups are described in U.S. Pat. No. 4,507,466, also incorporated herein by reference. In this patent Michael addition of methyl acrylate to ammonia or a primary amine core, followed by displacement of the ester with a diamine, such as ethylene diamine, produces a first generation dendrimer with primary amine terminated amide functional branch units. Successive Michael additions with methyl acrylate and diamine displacement reactions give successive generations of this multi-amine dendrimer.
Hyperbranched compounds are polymeric materials, typically prepared in a single polymerization step, with a very high degree of branching resulting from the choice of monomer and/or polymerization mechanism employed. The monomer may be an AB
n
type monomer, where A and B represent different reactive groups capable of undergoing an addition or condensation reaction with each other and n represents an integer equal to or greater than 2. Idealized fully branched homopolymer structures are similar to dendrimers but in practice the polymer molecules prepared in this way are characterized by a higher polydispersity and a lower degree of branching than an analogous dendrimer. Hyperbranched architectures may also result from chain transfer processes in conventional addition or ring opening reactions. Poly(ethyleneimine), prepared by ring opening polymerization of aziridines, is an example of this type of molecule and is a multi-amine compound.
Multi-amine molecules having “comb-like” architecture are characterized by a linear amine group-containing backbone with pendant side groups extending therefrom.
It has long been appreciated that cyanoacrylate adhesives give poor bonds when one or both substrates being bonded are nonpolar materials. This problem is particularly acute for polyolefin substrates and especially for low density polyethylene (LDPE). To improve bonding to such materials, a variety of primer activators have been employed with cyanoacrylate adhesives. Typically the activator is applied to one or both substrates neat or as a solution in a volatile solvent. The solvent, if present is dried and then the adhesive applied and the substrates promptly joined.
Organometallic compound primers for cyanoacrylate adhesives are described in JP 61-136567; U.S. Pat. No. 4,822,426; U.S. Pat. No. 5,110,392; U.S. Pat. No. 5,292,364 and Yang, J, et al., Primers for Adhesive Bonding to Polyolefins,”
J Applied Polymer Sci
., 48, 359-370 (1993).
Amine, amine salt or other nitrogen compound primers for cyanoacrylate adhesives are described in U.S. Pat. No. 3,260,637 (various secondary and tertiary mono and diamine compounds); U.S. Pat. No. 4,814,427 (mixture of aldehyde and organic amine); U.S. Pat. No. 4,869,772 (diazabicyclo and triazabicyclo compounds); U.S. Pat. No. 4,979,993 (tertiary ammonium alkylcarboxylates); U.S. Pat. No. 5,079,098 (quaternary ammonium compounds); U.S. Pat. No. 5,133,823 (imidazole derivatives); U.S. Pat. No. 5,135,598 (ethylenically unsaturated amine polymerized before the adhesive is applied); U.S. Pat. No. 5,314,562 (ethylenediamine and certain derivatives thereof); U.S. Pat. No. 5,567,266 (organic amines in certain carriers); EP 0476203 B1 (certain tertiary propylene and butylene diamines); EP 0271675 (mixture of aldehyde and organic amine); McDonnell, P., “Bonding of Polyolefins with Cyanoacrylate Adhesives,”
Adhesion
(London), 15, 69-79, (1991); Okamoto, Y., et al., “Bonding Non-Polar Plastics with Alkyl Cyanoacrylate Instant Adhesive,”
ANTEC'
91 (49th Annu. Tech Conf.-Soc. Plast. Eng.), 1114-1117 (1991); Okamoto, Y., et al., “Primers for Bonding Polyolefin Substrates with Alkyl Cyanoacrylate Adhesive,”
J. Adhesion
, 40, 81-91 (1993); and Yang, D., “Analysis of the Polyolefin/Trialkylamine Primer Interface,”
Surface and Interface Analysis
, 20 407-415 (1993).
Heretofore 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) and tri-n-dodecylamine (TDA) have been found to be among the most useful polyolefin primer materials. These primers, however, give only a limited improvement in bond strength on the lowest energy surface materials, such as LDPE, and typically do not give bonds which fail by a substrate failure mode on LDPE. There is therefore a continued need for primer materials for cyanoacrylate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multi-amine compound primers for bonding of polyolefins with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multi-amine compound primers for bonding of polyolefins with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multi-amine compound primers for bonding of polyolefins with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3214156

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.