Radiant energy – Inspection of solids or liquids by charged particles
Reexamination Certificate
2001-02-21
2003-12-09
Wells, Nikita (Department: 2881)
Radiant energy
Inspection of solids or liquids by charged particles
C250S307000, C073S105000
Reexamination Certificate
active
06661004
ABSTRACT:
STATEMENTS REGARDING FEDERALLY SPONSORED RESEARCH
Not applicable.
FIELD OF THE INVENTION
This invention relates generally to profilometry and more particularly, to image deconvolution techniques for probe scanning devices.
BACKGROUND OF THE INVENTION
As is known in the art, a structure having one characteristic dimension (e.g. height) which is more pronounced than the others (e.g. width and length) is referred to as a high aspect ratio structure. Examples of these type of structures include probes of atomic force and scanning tunnelling microscopes, field emission probes, micro-indenters and Micro Electro-Mechanical systems (MEM's) structures. Other high aspect ratio structures are found in quantum magnetic media for high-density data storage, compact disk stampers, crystalline structures, blades and biological systems such as virus particles. Such high aspect ratio structures have typical heights on the order of tens of micrometers and tip radii in the range of tens of nanometers. Further, these structures may or may not be conductive.
Obtaining images of high aspect ratio structures poses certain challenges. In imaging such structures, it is sometimes desirable to image the side walls of the structure and to measure the radius of the tip of the structure in a non-destructive manner. Desired image resolutions can be on the order of 1 nm in the vertical direction (i.e. a direction which is normal to a measurement surface) and 10 nm in the lateral direction (i.e. a direction which is parallel to the measurement surface). Some profilometry methods are unable to provide such resolutions and thus such imaging criteria prevent the use of certain types of profilometry methods.
In one type of conventional stylus profilometer, a stylus having a sharp tip and coupled to a hinged arm is mechanically dragged along the sample surface. The deflection of the hinged stylus arm is measured and recorded as the surface profile. The use of a hinged stylus arm allows measurement of very rough surfaces, for example those with peak-to-peak heights greater than 1 mm. Probe-to-surface contact forces range from 10
−3
N to 10
−6
N. However, since the hinged stylus arm is partially supported by the stylus itself, physical rigidity limits the minimum stylus tip radius and hence the lateral resolution to about 0.1 mm.
In optical profilometry, many different optical phenomena (such as interference and internal reflection) can be utilized. The most popular technique is based on phase-measuring interferometry, in which a light beam reflecting off the sample surface is interfered with a phase-varied reference beam. The surface profile is deduced from the resulting fringe patterns. With a collimated light beam and a large photodetector array, the entire surface can be profiled simultaneously. This and other conventional optical profilometry methods are limited in lateral resolution by the minimum focussing spot size of about 0.5 &mgr;m (for visible light). In addition, measurement values are dependent upon the surface reflectivity of the material being profiled.
In the current state of the art, only scanning probe microscopes can meet a 10 nm lateral resolution requirement. In these microscopes, an atomically sharp (or nearly so) tip at a very close spacing to the sample surface is moved over the surface using a piezoactuator. One type of scanning probe microscope is the atomic force microscope (AFM), which measures the topography of a surface with a probe that has a very sharp tip. A probe assembly includes a cantilever beam from which the probe, or microstylus extends. The probe terminates at the probe tip having a typical tip radius of less than 0.1 &mgr;m. The probe typically has a length on the order of a couple of micrometers and the cantilever beam typically has a length between 100 &mgr;m and 200 &mgr;m.
In a contact mode atomic force microscope, the probe is moved relative to the surface of a sample and deflection of the cantilever is measured to provide a measure of the surface topography. More particularly, a laser beam is directed toward, and reflects off the back surface of the cantilever to impinge upon a sensor, such as a photodetector array. The electrical output signals of the photodetector array provide a topographical image of the sample surface and, further, provide feedback signals to a fine motion actuator, sometimes provided in the form of a piezoelectric actuator. In a constant force contact AFM, the fine motion actuator is responsive to the feedback signals for maintaining a substantially constant force between the probe tip and the sample, such as forces on the order of 10
−8
N to 10
−11
N.
Contact atomic force microscopy offers high lateral and vertical resolutions, such as less than 1 nm vertical resolution and less than 50 nm lateral resolution. Further, since the contact AFM relies on contact forces rather than on magnetic or electric surface effects, advantageously the contact AFM can be used to profile conductive and non-conductive samples. However, the maximum surface roughness that can be profiled is much less than that of conventional stylus profilometers which use a linear variable differential transducer (LVDT).
In the non-contact atomic force microscope, long range van der Waals forces are measured by vibrating the cantilever near its resonance frequency and detecting the change in the vibrational amplitude of a laser beam reflected off the cantilever due to a change in the force gradient caused by changes in the surface profile. The non-contact atomic force microscope offers non-invasive profiling. However, the technique has some disadvantages when compared to contact atomic force microscopy. First, van der Waals forces are hard-to-measure weak forces, rendering the microscope more susceptible to noise. Secondly, the probe tip must be maintained at a fixed height above the sample, typically on the order of a few nanometers, and the feedback control necessary to maintain this spacing must operate slowly to avoid crashing the probe tip on the sample. Thirdly, since the tip is always floating above the surface, the effective tip radius is increased and hence the achievable lateral resolution is decreased.
AFM was primarily developed for high-resolution 3-D imaging (profilometry) of atomically flat samples. In that case, the probe tip is scanned over the sample and only the apical region of the probe interacts with the profiled surface. Therefore, AFM images will closely reproduce the topography regardless of distortions in the probe away from the apex. Accordingly, when stylus instruments are used in profilometry, the implicit assumption is that only the very apex of the stylus touches the surface at all points.
However, when structures having relatively high aspect ratio features are imaged, the AFM and stylus images can be quite different from the real topography. That is also the case when the dimensions of the sample are comparable to those of the employed probe (AFM probe or stylus). The reason for this deviation is that areas of the probe other than the apex (for instance, the probe sides) interact with the sample as well. The image distortion caused by the interaction of the probe with the surface is typically referred to as image convolution. These two conditions for significant convolution distortion—reduced sample dimensions and high aspect ratio occur frequently.
In many engineering fields, the characteristic dimensions of the samples or the features of interest lie well within the micrometer and sub-micrometer ranges. These fields include but are not limited to nanotechnology, micro-electromechanical systems (MEMS), semiconductor devices and storage media, micro-sensors, and blade fabrication. The investigated features could be photo-resist trenches in silicon wafers, memory pillars in quantum magnetic media devices, roughness in smooth optical surfaces, the radius of curvature of field emission probes and parts of micro-machines. Thus, images of such structures can be distorted by convolution errors.
The level of convolution is
Aumond Bernardo D.
Youcef-Toumi Kamal
Daly, Crowley & Mofford LLP
Massachusetts Institute of Technology
Wells Nikita
LandOfFree
Image deconvolution techniques for probe scanning apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Image deconvolution techniques for probe scanning apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Image deconvolution techniques for probe scanning apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3127096