Illumination – Supported by vehicle structure – Automobile
Reexamination Certificate
1998-07-17
2001-04-10
Sikder, Mohammad Y. (Department: 2872)
Illumination
Supported by vehicle structure
Automobile
C359S599000, C359S608000, C359S613000, C362S296040
Reexamination Certificate
active
06213627
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
This application claims the priority of German Patent No. 197 30 564.4, filed Jul. 17, 1997, the disclosure of which is expressly incorporated by reference herein.
The present invention relates to an illuminating system which has a light source and an arrangement for distributing light, for example, in an automobile.
Known illuminating systems conventionally use a light source for the direct illumination of objects. In order to permit a directed dispersion of rays, normally lens systems and/or mirror systems are used. For a diffuse dispersion of rays, diffusing lenses or diffusely reflecting luminescent screens are used. In this case, a large portion of the energy for the generation of light via the so-called thermal radiating devices which are used as the light source is lost by the generation of heat and by losses. An example of this is in the case of diffusing lenses. In addition, the color of the light is essentially determined by the light source itself and can be changed only with losses by the filtering effect of colored filtering disks or reflection surfaces. A no-loss active changing of the color of the light is not possible.
From German patent documents 197 00 162.9 and 197 03 592.2, which are not prior art, it is known to provide a holographic video screen for a laser front projection and a laser rear projection. In normal ambient light, this video screen is black. However, for certain wavelengths of the light, this video screen can be constructed such that this light is transmitted or reflected at a certain fixed angle. According to statements in these two patent references, this video screen does not have to have a plane construction. On the contrary, it is possible to construct this video screen with an almost arbitrary surface contour. For details regarding such a video screen, the disclosures of the above-referenced German patent documents are expressly incorporated by reference herein.
From non prior art reference, Veligdan James T. “Unique Interactive Projection Display Scree.” Brookhaven National Laboratory, Upton, N.Y., systems utilizing Sheimpflug type optics are known. For details regarding such Sheimpflug type optical devices, the disclosure of the above-referenced document is expressly incorporated by reference herein.
It is an object of the present invention to provide an arrangement for distributing light in an illuminating system such as a holographic video screen.
This and other objects and advantages are achieved by the arrangement according to the invention, in which the tendency of such a video screen to backscatter light of certain wavelengths from a predefined direction into a certain solid angle area is utilized. In ambient light, such a video screen need not appear black (or at least dark) because for an illuminating system used in the dark the darkness of the screen is insignificant.
Additionally utilized is the characteristic that the video screen surface, which was holographically obtained for the holographic video screen, need not be non-planar but may also have, for example, the shape of a reflector. As a result, the characteristic of this reflector is transmitted to the holographic video screen.
Extensive freedom therefore exists with respect to the design of illuminating elements with choosing their color and shape. As a result, for example, flat, uniformly bright luminous elements can be produced which emit their light at a precisely defined angle and uniformly illuminate the irradiated objects so that the luminous element appears bright only when viewed within the illuminating angle. For such luminous elements, the projection light sources should be arranged such that they are not visible themselves. Without any special blank-out or shading devices, such an arrangement prevents disturbing influences caused by looking at the bright light source. The light of the light source therefore remains invisible for each observer as long as he is not within the light cone. Possibilities of an advantageous use are therefore provided, for example, as unobtrusive studio lights in the area of the angle of view of the camera.
In an embodiment of the illuminating system, the video screen appears gray or colored when placed in ambient light. As a result, a large variety of design colors is permitted.
In another embodiment of the illuminating system, as a result of a correspondingly extending shading from white to gray of the video screen surface (by which the hologram is produced) a possibly non-uniform light distribution of the projection system is compensated.
It can therefore be manufactured in a simpler manner and at a more reasonable cost. As a rule, simple metal oxide vaporized mirror halogen lamps are sufficient. From the white light of these lamps, only those light wavelengths which correspond to the laser wavelengths which were used for producing this video screen are backscattered or transmitted. As a result, for example, the irradiation of infrared thermal rays is prevented. The light composed of the colors red, green and blue nevertheless appears white.
In a further development of the embodiments of the invention, the hologram is white. Colored projection light is therefore reproduced in the same color.
In an alternative further development of the embodiments of the invention, the hologram is colored. This results in a light change from white projection light to the color of the hologram if this hologram represents a colored video screen. If the light has fractions of the hologram color or white light fractions, only these are changed into the hologram color. The colors red, green and blue can generally be used for the colored display.
In yet another embodiment of the invention, the illuminating system has a narrow-band white light incandescent light or an energy-saving laser as a light source. Furthermore, the hologram of a reflecting surface results in an almost no-loss utilization of the light flow of the projection light source into the desired direction at the desired angle. The shape and dimensions of the video screen may be freely designed. A particularly good utilization is obtained if the usable video screen surface corresponds to the overall size.
In still another embodiment of the invention, the illuminating system is used in street lighting. In contrast to conventional street lighting whose illuminating elements can produce blinding light in the eyes of drivers, via the holographic video screen, street lights can be implemented which do not generate blinding light. The illuminating element acts black, for example, in the driver's vision, while the environment is illuminated. Naturally, in this case, the actual illuminating bodies must be arranged such that they are shielded themselves. Additionally, when a laser is used as a light source, considerable amounts of electric energy can be saved. The savings may be in the order of 90%.
In a further embodiment of the invention, such an illuminating system is used in film and photo studios or for stage lighting. As mentioned previously, illuminating elements can be produced whose flat dimension permits an illumination which is completely free of shading. This can, for example, replace light tanks or reflection screens in photo studios. For photo purposes, the holograms can also be illuminated by flashes in order to generate a very high light current for a short time. When high-power lasers are used, very high luminous powers are possible even for a very short time for such flash systems. This is without any danger caused by the laser light as the result of the large-surface beaming.
In an even further embodiment of the present invention, such an illuminating system is used for illuminating temperature-sensitive objects. Since the actual light source irradiates only the hologram and the hologram itself supplies only scattered light, temperature-sensitive objects can be brightly illuminated. In this case, a direct front projection was found to be advantageous. For this purpose, it is particularly advantageous to arrange either the thermal li
Abersfelder Guenter
Eberl Heinrich Alexander
Grantz Helmut
Halldorsson Thorsteinn
Schmidt-Bischoffshausen Horst
Daimler-Chrysler AG
Evenson, McKeown, Edwards & Lenahan P.L.L.C.
Sikd-er Mohammad Y.
LandOfFree
Illuminating system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Illuminating system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Illuminating system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2524984