Hybrid multistage forward cleaner system with flotation cell

Paper making and fiber liberation – Processes of chemical liberation – recovery or purification... – With classifying – separating or screening of pulp

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C162S004000, C209S728000, C241S028000

Reexamination Certificate

active

06416622

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to papermaking fiber processing and more particularly to a method and apparatus useful for cleaning secondary pulp by way of a multistage forward cleaner system with an integrated flotation cell which cooperates with the forward cleaners to boost efficiency of the system.
BACKGROUND
Processing of papermaking fibers to remove contaminants is well known in the art, including the use of forward cleaners and flotation cells. Such technology is used, for example, to treat secondary (recycle) fiber sources for re-use in paper products such as towel and tissue, paperboard, coated writing and printing papers and so forth. Following is a brief synopsis of some patents of general interest.
According to U.S. Pat. No. 4,272,315 to Espenmiller waste paper containing materials, e.g., commercial “waste paper”, are treated for recovery of reusable paper therefrom by slushing in a pulper from which two fractions are continuously extracted—a first fraction through small holes, e.g. {fraction (3/16)} inch in diameter, and a second fraction through substantially larger holes, e.g., 1 inch in diameter. The second fraction is screened, preferably after a centrifugal cleaning operation, in a screen having small perforations sized to accept only substantially defibered paper, and the accepts flow is mixed directly with the first extracted fraction. The reject flow from this screen is conducted, with or without an intermediate deflaking operation, to a tailing screen from which the accepts are recycled to the pulper and the rejects are eliminated from the system. Advantages of this method and system include the continuous elimination of plastic and other floating trash from the pulper, a high degree of essentially complete defibering in the pulper, and minimal recycling of adequately defibered stock.
U.S. Pat. No. 4,983,258 to Maxham discloses a process for the production of papermaking fiber or pulp from waste solids emanating from pulp and paper mills, particularly waste solids in process water streams containing fibrous solids that cannot be directly recycled by paper mill “saveall” devices, from pulp and paper mill process water streams conveyed by the sewerage system to wastewater treatment plant facilities, and from “sludge” emanating from the underflow of a primary clarifier or sedimentation basin at pulp and paper mill wastewater treatment facilities either before or after the “sludge” is thickened and dewatered. The said process comprises a defibering stage to release individual fibers from bundles, a screening stage to separate long fiber and debris from short fiber and clay, a centrifugal cleaning stage to separate debris from the long fiber, a bleaching stage to increase the brightness of the fiber, a dewatering stage to remove excess water from the pulp, a sedimentation stage to separate the short fiber-clay-debris from the defibering effluent which is substantially recycled, and a biological treatment process to remove dissolved organic materials from the excess water generated which can be either discharged from the process or recycled as process water.
U.S. Pat. No. 5,240,621 to Elonen et al. discloses a method of separating an aqueous solids containing suspension which includes (a) subjecting a first solids containing suspension to centrifugal forces so as to separate the suspension into a first gas containing flow, a second gas-free flow and a third flow; (b) feeding the third flow into a flotation cell having a bottom; (c) introducing air at the bottom of the flotation cell into the third flow for separating from the third flow a fourth partial flow; (d) withdrawing the air containing third flow after the separation of the fourth partial flow from the flotation cell; and (e) subjecting the third flow to the centrifugal forces of step (a). An apparatus for the separation of gas and lightweight material from a gas and lightweight material containing aqueous solids suspension is also described and includes a centrifugal pump for separating the gas and lightweight material from the solids suspension with a suspension inlet and an outlet for the lightweight material; a flotation cell for separating the lightweight material from a solids suspension; and a circulation loop connecting the outlet of the centrifugal pump, the flotation cell and the suspension inlet of the pump.
In U.S. Pat. No. 5,693,222 to Galvan et al. a dissolved gas flotation tank system is disclosed which is configured to provide educted gas or air into recirculated effluent fluid from the tank which includes a pump system which increases the dissolution rate of gas into the effluent fluid thereby eliminating the need for retention tanks and related equipment which adds to high equipment costs. The dissolved gas flotation tank system also provides a pre-contact chamber for assuring immediate and intimate contact between the suspended solids in an influent feed stream and the recirculated effluent fluid in which gas is dissolved, as well as flocculant when used, to produce a better agglomerate structure for improved flotation and separation. The dissolved gas flotation tank also provides an improved means of removing and processing float from the tank, and employs a dewatering system enhanced by the addition of chemicals or flocculants into the float removal system.
The disclosures of the foregoing patents are hereby incorporated for reference.
While flotation and separation technologies are fairly advanced, there is an ongoing need to increase overall fiber-cleaning system performance and to reduce the amount of waste and capital investment in the plant.
SUMMARY OF INVENTION
The present invention provides a hybrid system for processing papermaking fibers and includes a multistage array of forward cleaners coupled with a flotation cell which increases overall efficiency of the system. In a typical embodiment, a first rejects aqueous stream from a first stage bank of centrifugal cleaners is treated in a flotation cell before being fed to a second stage bank of centrifugal cleaners.
One advantage of feeding the second accepts stream forward is that it does not have to be returned to the first bank of cleaners for re-cleaning. This reduces the size of the first bank of cleaners or allows an existing installation to operate at a lower consistency. (The cleaners operate more efficiently at a low consistency of 0.5% than at 0.8 or 1%). Another advantage is that the flotation cell operates at greater than 60% efficiency on removing hydrophobic contaminants from the first cleaner rejects, while another cleaner stage removes less than 50% of the hydrophobic contaminants. As a result a large quantity of hydrophobic contaminants are removed in the flotation stage, which makes the remaining cleaner stages work more efficiently with less good fiber loss.
Investigation showed that the number of hydrophobic contaminants in the second cleaner accepts after the flotation stage was lower than the number of hydrophobic contaminants in the first cleaner accepts. Without the flotation stage the number of hydrophobic contaminants in the second accepts is much higher than the first accepts, so that the second accepts have to be returned to the first bank of cleaners for more cleaning.
As will be appreciated from the discussion which follows, the size and cost of a flotation stage for treating secondary fiber can be reduced by up to 75% if it is installed in centrifugal cleaner system as compared to a full scale treatment of the stock by flotation. The centrifugal cleaner system modeling indicates a 34% reduction in ink speck area of total centrifugal cleaner system accepts by removing ink specks from the first stage rejects with 80% efficiency in a flotation stagc and then feeding the flotation accepts forward after centrifugal cleaning of the second stage. (24% reduction if second stage rejects are treated in a similar manner). The ability to feed the centrifugal cleaner rejects forward (after the flotation stage and additional centrifugal cleaning in the next stage) reduces the stock co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hybrid multistage forward cleaner system with flotation cell does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hybrid multistage forward cleaner system with flotation cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hybrid multistage forward cleaner system with flotation cell will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2908265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.