Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
2001-02-28
2003-04-29
Slobodyansky, Elizabeth (Department: 1652)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C435S193000, C435S252300, C435S320100, C435S325000
Reexamination Certificate
active
06555669
ABSTRACT:
1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding proteins that share sequence similarity with mammalian transferase proteins such as, but not limited to, sulfotransferases and N-acetyl-galactosaminyltransferases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed polynucleotides, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed polynucleotides that can be used for diagnosis, drug screening, clinical trial monitoring, and treatment of diseases and disorders.
2. BACKGROUND OF THE INVENTION
Transferases are biologically active proteins that covalently modify molecules such as biological substrates, including proteins, as part of degradation, maturation, and secretory pathways within the body. Transferases have thus been associated with, inter alia, development, immunity, cell replication, gene expression, cancer, protein and cellular senescence, hyperproliferative disorders and as cancer associated markers. In particular, transferases have been implicated in, inter alia, immune function and Parkinson's Disease.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode novel human proteins, and the corresponding amino acid sequences of these proteins. The novel human proteins (NHPs) described for the first time herein share structural similarity with mammalian sulfotransferases, N-acetyl-galactosaminyltransferases and transferase proteins.
The novel human nucleic acid (cDNA) sequences described herein encode proteins/open reading frames (ORFs) of 303, 110, 265, 148, 148, 186, 59, 214, and 97 amino acids in length (sulfotransferases, SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, and 18); 143, 224, 112, 269, 535, 506, 240, 321, 209, 366, 631, and 603 amino acids in length (N-galactosaminyltransferases, SEQ ID NOS: 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, and 43 respectively); and 184 amino acids in length (transferases, SEQ ID NO:46).
The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, mutant NHPs, or portions thereof, that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described polynucleotide under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or “knock-outs” (which can be conditional) that do not express a functional NHP. Knock-out mice can be produced in several ways, one of which involves the use of mouse embryonic stem cells (“ES cells”) lines that contain gene trap mutations in a murine homolog of at least one of the described NHPs. When the unique NHP sequences described in SEQ ID NOS:1-47 are “knocked-out” they provide a method of identifying phenotypic expression of the particular gene as well as a method of assigning function to previously unknown genes. Additionally, the unique NHP sequences described in SEQ ID NOS:1-47 are useful for the identification of coding sequence and the mapping a unique gene to a particular chromosome.
Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.
REFERENCES:
patent: 4215051 (1980-07-01), Schroeder et al.
patent: 4376110 (1983-03-01), David et al.
patent: 4594595 (1986-06-01), Struckman
patent: 4631211 (1986-12-01), Houghten
patent: 4689405 (1987-08-01), Frank et al.
patent: 4713326 (1987-12-01), Dattagupta et al.
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5252743 (1993-10-01), Barrett et al.
patent: 5424186 (1995-06-01), Fodor et al.
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5459127 (1995-10-01), Felgner et al.
patent: 5556752 (1996-09-01), Lockhart et al.
patent: 5700637 (1997-12-01), Southern
patent: 5744305 (1998-04-01), Fodor et al.
patent: 5837458 (1998-11-01), Minshull et al.
patent: 5877397 (1999-03-01), Lonberg et al.
patent: 5948767 (1999-09-01), Scheule et al.
patent: 6075181 (2000-06-01), Kucherlapati et al.
patent: 6110490 (2000-08-01), Thierry
Ansorge et al. (Feb. 18, 2000) Database GenEmbl, Accession AL096739.*
White et al. (Oct. 13, 1995) J. Biol. Chem., vol. 270 (41), pp. 24156-24165.*
Bird et al, 1988, “Single-Chain Antigen-Binding Proteins”, Science 242:423-426.
Bitter et al, 1987, “Expression and Secretion Vectors for Yeast”, Methods in Enzymology 153:516-544.
Colbere-Garapin et al, 1981, “A New Dominant Hybrid Selective Marker for Higher Eukaryotic Cells”, J. Mol. Biol. 150:1-14.
Gautier et al, 1987, “&agr;-DNA IV:&agr;-anomeric and &bgr;-anomeric tetrathymidylates covalently linked to intercalating oxazolopyridocarbazole. Synthesis, physiochemical properties and poly (rA) binding”, Nucleic Acids Research 15(16):6625-6641.
Gordon, 1989, “International Review of Cytology”, 115:171-229.
Greenspan et al, 1993, “Idiotypes: structure and immunogenicity”, FASEB Journal 7:437-444.
Huse et al, 1989, “Generation of a Large Combinatorial Library of the Immunoglobulin Repertoire in Phage Lambda”, Science 246:1275-1281.
Huston et al, 1988, “Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli”, Proc. Natl. Acad. Sci. USA 85:5879-5883.
Inoue et al, 1987, “Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and R Nase H”, FEBS Letters 215(2):327-330.
Inoue et al, 1987, “Synthesis and hybridization studies on two complementary nona(2′-O-methyl)ribonucleotides”, Nucleic Acids Research 15(15):6131-6149.
Inouye & Inouye, 1985, “Up-promoter mutations in the lpp gene of Escherichia coli”, Nucleic Acids Research 13(9):3101-3110.
Janknecht et al, 1991, “Rapid and efficicent purification of native histidine-tagged protein expressed by recombinant vaccinia virus”, PNAS 88:8972-8976.
Kohler & Milstein, 1975, “Continuous cultures of fused cells secreting antibody of predefined specificity”, Nature 256:495-497.
Logan et al, 1984, “Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection”, Proc. Natl. Acad. Sci. USA 81:3655-3659.
Lowy et al, 1980, “Isolation of Transforming DNA: Cloning the Hamster aprt Gene”, Cell 22:817-823.
McKinlay et al, 1989, “Rational Design of Antiviral Agents”, Annu. Rev. Pharmacol. Toxicol. 29:111-122.
Miyajima et al, 1986, “Expression of murine and human granulocyte-macrophage colony-stimulating factors inS. cerevisiae: mutagenesis of the potential glycosylation sites”, The EMBO Journal 5(6):1193-1197.
Morrison et al, 1984, “Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains”, Proc. Natl. Acad. Sci. USA 81:6851-6855.
Mulligan & Berg, 1981, “Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase”, Proc. Natl. Acad. Sci. USA 78(4):2072-2076.
Neuberger et al, 1984, “Recombinant antibodies possessing novel effector functions”, Nature 312:604-608.
Nisonoff, 1991, “Idiotypes: Concepts and Applications”, J. of Immunology 147:2429-2438.
O'Hare et al, 1981, “Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasm
Abuin Alejandro
Donoho Gregory
Friedrich Glenn
Hilbun Erin
Hu Yi
Lexicon Genetics Incorporated
Slobodyansky Elizabeth
LandOfFree
Human transferase proteins and polynucleotides encoding the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Human transferase proteins and polynucleotides encoding the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human transferase proteins and polynucleotides encoding the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3106024