Stock material or miscellaneous articles – Coated or structually defined flake – particle – cell – strand,... – Particulate matter
Reexamination Certificate
1999-01-22
2001-01-30
Moore, Margaret G. (Department: 1712)
Stock material or miscellaneous articles
Coated or structually defined flake, particle, cell, strand,...
Particulate matter
C428S402210, C428S036400, C428S036800, C428S036920, C528S043000
Reexamination Certificate
active
06180236
ABSTRACT:
1. FIELD OF THE INVENTION
The present invention relates to hollow silicone resin particles and to a method for the preparation thereof.
2. DESCRIPTION OF THE PRIOR ART
Silicone rubbers and silicone resins exhibit a number of excellent characteristics, such as heat resistance, weather resistance, chemical resistance, and electrical insulating properties, and for this reason have entered into use in a variety of applications. Silicone rubber particulates and silicone resin particulates with these same excellent physical and chemical properties are already well known, but there has been nothing with regard to hollow particles beyond the suggestion in Japanese Patent Application Laid Open [Kokai or Unexamined] Number Sho 55-5787 [5,787/1980]. This reference concerns hollow solidified organopolysiloxane particles (microcapsules) prepared by mixing a gas into an ultraviolet-curable liquid organopolysiloxane composition and then effecting cure by exposing the resulting mixture to ultraviolet radiation while it is being dispersed in water by stirring. However, this reference does not describe or suggest hollow particles of thermoplastic silicone resin proper or a method for the fabrication thereof. One drawback to the hollow cured organopolysiloxane particles (microcapsules) described in this reference is that their skin is not easily ruptured even when they are dipped in solvent or heated. This prevents them, for example, from functioning as a good-quality foaming agent for the fabrication of silicone rubber sponge or silicone rubber foam.
SUMMARY OF THE INVENTION
An object of the present invention is to provide hollow silicone resin particles having a skin or shell that ruptures upon heating to furnish the expanded gas from within the capsule as a foam generator. Another object of the present invention is to provide a method for the preparation of the said hollow silicone resin particles.
In accordance with the present invention, hollow silicone 20 resin particles having an average particle size of 0.1 to 100 &mgr;m and comprising a capsule having a skin or shell that is thermoplastic silicone resin, are produced. In the method of the invention the hollow thermoplastic silicone resin particles are produced by spraying a dispersion of water and thermoplastic silicone resin dissolved in solvent into hot gas, in order to evaporate the solvent and the water and at the same time solidify the thermoplastic resin into hollow particles while it is in the spray state.
DETAILED DESCRIPTION OF THE INVENTION
In accordance with the present invention, thermoplastic silicone resin makes up the capsule shell or wall in the hollow silicone resin particles. The interior of the capsule contains a gas such as air, nitrogen, or helium. The outside capsule diameter should average from 0.1 to 100 &mgr;m. Average diameters of 5 to 50 &mgr;m are particularly easy to fabricate. The thickness of the capsule wall will often be about 10% of the capsule diameter. While the shape is not critical, spherical shapes again are particularly easy to fabricate. The silicone resin making up the capsule of the subject hollow silicone resin particles is a thermoplastic resin: it is a solid at ambient temperature and softens and melts upon heating. Its softening point is preferably in the range from 40° C. to 200° C., based on considerations of its ultimate applications and ease of hollow particle fabrication. The silicone resin is preferably organopolysiloxane with the general formula R
a
SiO
(4−a)/2
in which R represents substituted and unsubstituted monovalent hydrocarbon groups and a is a number from 0.8 to 1.8. The substituted and unsubstituted monovalent hydrocarbon groups are exemplified by alkyl such as methyl, ethyl, propyl, and butyl; aryl such as phenyl and tolyl; alkenyl such as vinyl and hexenyl; and halogenated hydrocarbon groups such as chlorophenyl and 3,3,3-trifluoropropyl. Methyl and phenyl are preferred from the standpoints of ease of acquisition, economic efficiency, and heat resistance. The subject silicone resin is exemplified by resins composed of RSiO
3/2
units; resins composed of RSiO
3/2
and R
2
SiO
2/2
units; resins composed of R
3
SiO
1/2
, RSiO
3/2
, and R
2
SiO
2/2
units; resins composed of R
3
SiO
1/2
and SiO
4/2
units; and resins composed of R
3
SiO
1/2
, R
2
SiO
2/2
, and SiO
4/2
units. Small or trace amounts of silanol, methoxy, or ethoxy may remain in the silicone resin molecule. The silicone resin should have a softening point of 40° C. to 200° C. for the following reasons: the hollow silicone resin particles have a strongly impaired storage stability at a softening point below 40° C.; at softening points above 200° C., the particles become difficult to melt and hard to manage. The preferred softening point range is 60° C. to 180° C. For the present purposes, the softening point refers to the temperature at which the silicone resin begins to flow under its own weight or under the effect of its native surface tension. This temperature is easily measured by observing the particles under a microscope while they are heated at a constant temperature.
The subject hollow silicone resin particles can be prepared simply by dissolving the thermoplastic silicone resin in a solvent; mechanically mixing or stirring the resulting solution with water to prepare a dispersion; and spraying this dispersion into a hot gas current in order to evaporate said solvent and the water and at the same time solidify the silicone resin while it is in the spray state into hollow particles.
Thus, the thermoplastic silicone resin is first dissolved in solvent to prepare a homogeneous solution of the silicone resin. Useable solvents are selected from solvents that will evaporate in the hot gas current and are incompatible or immiscible with water. Desirable solvents will have a boiling point below that of water in the 30° C. to 90° C. range. The solvent is exemplified by dichloromethane, chloroform, 1,1-dichloroethane, 1,1,1-trichloroethane, acetone, methyl ethyl ketone, and benzene.
The silicone resin solution and water are then mixed or stirred in order to prepare a dispersion. This particular step can be carried out simply using a blade-type high-speed mixer, for example, a pin mixer, turbulizer, speed mixer, or saturn mixer. The technique for spraying into a hot gas current may be any technique capable of spraying the solution into microfine liquid drops, but is not otherwise critical. The spray technique is exemplified by impinging the dispersion on a disk rotating at high speed in order to effect microparticulation and spraying by the centrifugal force; spraying the dispersion as a jet in combination with a gas; and spraying using ultrasound to microparticulate the dispersion. The preferred method, however, uses a spray nozzle generally known as a two-fluid nozzle: the dispersion is sprayed in combination with a gas and the microparticles sprayed from two directions can be collided to produce even finer particles. The spray temperature and temperature of the hot gas current in general will desirably range from room temperature up to the boiling point of water, i.e., from 40° C. to 90° C. The liquid microdrops sprayed into the hot gas current are converted into hollow silicone resin particles as a consequence of solvent evaporation as the microdrops are carried along in the hot gas stream. Between spraying of the dispersion and collection the temperature of the hot gas stream will drop due to solvent evaporation and heat losses from the system, and the flowrate and exhaust temperature of the hot gas current must be regulated so as to avoid condensation of the evaporated solvent prior to collection. When at this point entirely solid, i.e., nonhollow, silicone resin particles are mixed in with the hollow silicone resin particles, the product is preferably dipped in water containing a small amount of surfactant and the floating product is recovered. Silicone resin has a specific gravity greater than 1, but in the form of hollow particles has an apparent specific gravity less than 1 an
Hamada Mitsuo
Ozaki Koichi
Yamadera Toyohiko
Dow Corning Toray Silicone Co. Ltd.
McKellar Robert L.
Moore Margaret G.
Troy Timothy J.
LandOfFree
Hollow silicone resin particles and method for the... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Hollow silicone resin particles and method for the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hollow silicone resin particles and method for the... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2477677