Semiconductor device manufacturing: process – With measuring or testing
Reexamination Certificate
2006-04-11
2006-04-11
Trinh, Michael (Department: 2822)
Semiconductor device manufacturing: process
With measuring or testing
C438S016000, C438S017000
Reexamination Certificate
active
07026175
ABSTRACT:
Heat is applied to a conductive structure that includes one or more vias, and the temperature at or near the point of heat application is measured. The measured temperature indicates the integrity or the defectiveness of various features (e.g. vias and/or traces) in the conductive structure, near the point of heat application. Specifically, a higher temperature measurement (as compared to a measurement in a reference structure) indicates a reduced heat transfer from the point of heat application, and therefore indicates a defect. The reference structure can be in the same die as the conductive structure (e.g. to provide a baseline) or outside the die but in the same wafer (e.g. in a test structure) or outside the wafer (e.g. in a reference wafer), depending on the embodiment.
REFERENCES:
patent: 3462602 (1969-08-01), Apple
patent: 3803413 (1974-04-01), Vanzetti et al.
patent: 3909602 (1975-09-01), Micka
patent: 4201087 (1980-05-01), Akita et al.
patent: 4255971 (1981-03-01), Rosencwaig
patent: 4455741 (1984-06-01), Kolodner
patent: 4466748 (1984-08-01), Needham
patent: 4521118 (1985-06-01), Rosencwaig
patent: 4522510 (1985-06-01), Rosencwaig
patent: 4579463 (1986-04-01), Rosencwaig et al.
patent: 4632561 (1986-12-01), Rosencwaig et al.
patent: 4634290 (1987-01-01), Rosencwaig
patent: 4636088 (1987-01-01), Rosencwaig et al.
patent: 4679946 (1987-07-01), Rosencwaig et al.
patent: 4750822 (1988-06-01), Rosencwaig et al.
patent: 4795260 (1989-01-01), Schuur et al.
patent: 4873434 (1989-10-01), See et al.
patent: 4950990 (1990-08-01), Moulder
patent: 5042951 (1991-08-01), Gold et al.
patent: 5074669 (1991-12-01), Opsal
patent: 5128864 (1992-07-01), Waggener et al.
patent: 5149978 (1992-09-01), Opsal et al.
patent: 5159412 (1992-10-01), Willenborg et al.
patent: 5181080 (1993-01-01), Fanton et al.
patent: 5228776 (1993-07-01), Smith et al.
patent: 5304931 (1994-04-01), Flamig et al.
patent: 5377006 (1994-12-01), Nakata
patent: 5574562 (1996-11-01), Fishman et al.
patent: 5790251 (1998-08-01), Hagiwara
patent: 5877860 (1999-03-01), Borden
patent: 5883518 (1999-03-01), Borden
patent: 5966019 (1999-10-01), Borden
patent: 5978074 (1999-11-01), Opsal et al.
patent: 6040936 (2000-03-01), Kim et al.
patent: 6049220 (2000-04-01), Borden et al.
patent: 6054868 (2000-04-01), Borden et al.
patent: 6154280 (2000-11-01), Borden
patent: 6169601 (2001-01-01), Eremin et al.
patent: 6178020 (2001-01-01), Schultz et al.
patent: 6268916 (2001-07-01), Lee et al.
patent: 6281027 (2001-08-01), Wei et al.
patent: 6323951 (2001-11-01), Borden et al.
patent: 6327035 (2001-12-01), Li et al.
patent: 6330361 (2001-12-01), Mitchell et al.
patent: 6387715 (2002-05-01), David et al.
patent: 6400454 (2002-06-01), Noguchi et al.
patent: 6426644 (2002-07-01), Borden et al.
patent: 6483594 (2002-11-01), Borden et al.
patent: 6489801 (2002-12-01), Borden et al.
patent: 6528333 (2003-03-01), Jun et al.
patent: 6541747 (2003-04-01), Kikuchi et al.
patent: 6559942 (2003-05-01), Sui et al.
patent: 6694284 (2004-02-01), Nikoonahad et al.
patent: 6720248 (2004-04-01), Ryo
patent: 6747355 (2004-06-01), Abiru
patent: 6812047 (2004-11-01), Borden et al.
patent: 6878559 (2005-04-01), Borden et al.
patent: 6885444 (2005-04-01), Borden et al.
patent: 6906801 (2005-06-01), Borden et al.
patent: 2001/0017878 (2001-08-01), Nozoe et al.
patent: 2002/0126732 (2002-09-01), Shakouri et al.
patent: 2002/0167326 (2002-11-01), Borden et al.
patent: 2003/0165178 (2003-09-01), Borden et al.
patent: 0 718 595 (1995-12-01), None
patent: 405006929 (1993-01-01), None
patent: 2000 009443 (2000-01-01), None
patent: ISR PCT/US99/12999 (1999-09-01), None
patent: ISR PCT/US01/07475 (2001-07-01), None
patent: ISR PCT/US03/06239 (2003-02-01), None
patent: ISR PCT/US03/06379 (2003-02-01), None
Paquin, “Properties of Metals”, Handbook of Optics, vol. II, McGraw-Hill, Inc. (month unavailable), 1995, pp. 35.3-35.7.
Rosencwaig et al. “Detection of Thermal Waves Through Optical Reflectance”, Appl Phys. Lett. 46, Jun. 1985, pp1013-1015.
Rosencwaig, “Thermal-Wave Imaging”, SCIENCE, vol. 218, No. 4569, Oct. 1982, pp. 223-228.
Opsal et al. “Thermal-Wave Detection and Thin-Film Thickness Measurements with Laser Beam Deflection”, Applied Optics, vol. 22, No. 20, Oct. 1983, pp. 3169-3176.
Rosencwaig, “Thermal Wave Characterization and Inspection of Semiconductor Materials and Devices”, Chapter 5 (pp. 97-135) of Photoacoustic and Thermal Wave Phenomena in Semiconductors, North Holland (month unavailable) 1987.
J. Opsal, “High Resolution Thermal Wave Measurements and Imaging of Defects and Damage in Electronic Materials” Photoacoustic and Photothermal Phenomena II, Springer Series in Optical Sciences, vol. 62, Springer Verlag Berlin, Heidelberg, (month unavailable) 1990.
J. Kolzer et al “Thermal Imaging and Measurement Techniques for Electronic Materials and Devices” Microelectronic Engineering, vol. 31, 1996 (month unknown) pp. 251-270.
C. Martinsons et al. “Recent progress in the measurement of thermal properties of hard coatings” Thin Solid Films, vol. 317, Apr. 1998, 455-457.
S. Wolf and R. N. Tauber, “Silicon Processing For The VLSI Era”, vol. 1, 1986, pp. 388-399.
Yaozhi Hu and Sing Pin Tay, “Spectroscopic ellipsometry investigation of nickel silicide formation by rapid thermal process”, J. Vac. Sci. Technology, American Vacuum Soc. May/Jun. 1998, pp. 1820-1824.
Bristow, Thomas C. and Dag Lindquist, “Surface Measurements With A Non-Contact Nomarski-Profiling Instrument”, Interferometric Metrology, SPIE vol. 816, Aug. 1987, pp. 106-110.
Charles Kittel, “Introduction to Solid State Physics”, Fourth Edition, John Wiley & Sons, published prior to Mar. 1, 2002, pp. 262-264.
Rolf E. Hummel, “Electronic Properties of Materials, An Introduction For Engineers”, published prior to Mar. 1, 2002, pp. 137-145.
H.S. Carslaw and J.C. Jaeger, “Conduction of Heat In Solids”, Second Edition, published prior to Mar. 1, 2002, pp. 64-66.
A. Rosencwaig, “Thermal Wave Measurement of Thin-Film Thickness”, 1986 American Chemical Society, pp. 182-191.
A. Rosencwaig et al., “Thin-Film Thickness Measurements with Thermal Waves”, Journal De Physique, Oct. 1983, pp. C6-483-C6-489.
S. Ameri et al., “Photo-Displacement Imaging”, Mar. 30, 1981, pp. 337-338.
L. Chen et al., “Thermal Wave Studies of Thin Metal Films Using the Meta-Probe-A New Generation Photothermal System” 25th Review of Progress in QNDE, Snowbird, UT Jul. 19-24, 1998, pp 1-12.
P. Alpern and S. Wurm, “Modulated Optical Reflectance Measurements on Bulk Metals and Thin Metallic Layers”, J. Appl. Phys. 66(4), Aug. 15, 1989, pp 1676-1679.
J. Opsal, “The Application of Thermal Wave Technology to Thickness and Grain Size Monitoring of Aluminum Films”, SPIE vol. 1596 Metalization Performance and Reliability Issues for VLSI and ULSI (1991), pp 120-131.
A. Rosenwaig, “Process Control In IC Manufacturing With Thermal Waves”, Review of Progress in Quantitative Nondestructive Evaluation, vol. 9, 1990, pp 2031-2037.
K. Farnaam, “Measurement of Aluminum Alloy Grain Size on Product Wafers and its Correlation to Device Reliability”, 1990 WLR Final Report, pp 97-106.
B.C. Forget et al., “High Resolution AC Temperature Field Imaging”, Electronic Letters Sep. 25, 1997, vol. 33 No. 20, pp 1688-1689.
C. Paddock et al., “Transient Thermoreflectance from Metal Films”, May 1986 vol. 11, No. 5 Optical Letters, pp 273-275.
C. Paddock et al., “Transient Thermoreflectance from Metal Films”, J. Appl. Phys. 60(1), Jul. 1, 1986, pp 285-290.
Per-Eric Nordail et al. “Photothermal Radiometry”, Physica Scripts, vol. 20, 659-662, 1979.
A. Rosenwaig, “Thermal Wave Monitoring and Imaging of Electronic Materials and Devices”, pp 73-109.
A. Rosenwaig, “Applications of Thermal-Wave Ph
Borden Peter G.
Genio Edgar B.
Li Jiping
Applied Materials Inc.
Suryadevara Omkar
Trinh Michael
LandOfFree
High throughput measurement of via defects in interconnects does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High throughput measurement of via defects in interconnects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High throughput measurement of via defects in interconnects will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3530593