Radiant energy – Inspection of solids or liquids by charged particles
Patent
1990-07-30
1991-10-29
Berman, Jack I.
Radiant energy
Inspection of solids or liquids by charged particles
250309, 250423F, 250287, H01J 37285, H01J 4940
Patent
active
050618504
ABSTRACT:
Atom probe apparatus includes an emission tip from which atoms can be evaporated in atomic emission events, a position sensitive detector for detecting the position and timing of the charge cloud resulting from atomic emission events, and a pulse heating beam for heating the emission tip in short pulses to evaporate atoms essentially one at a time from the emission tip. The heating beam may be formed as an electron beam from an electron gun which is directed to the tip and scanned rapidly back and forth across the tip to be incident upon the tip for short periods of time as the beam is scanned back and forth. The beam may further be produced as a chopped beam of electrons by scanning the beam back and forth across a slit in an aperture plate so that only pulses of electrons pass through the plate as the beam passes across the slit. The electrons passing through the slit are then focused and directed to the tip. The tip may also be heated by light from a pulsed source such as a laser which is passed through a reflecting Schwarzschild objective and focused onto the tip in pulses to provide excitation by light photons. The position sensitive detector, which may include a microchannel plate backed by a position sensitive wedge and strip detector, determines both the time of arrival of a charge pulse from an atomic emission event and the relative position of the charge cloud at the point where it impacts upon the detector. The detector may also be formed as a three-level, trigonal array of pads which allows both one and two atomic events per heating pulse to be resolved.
REFERENCES:
patent: 3602710 (1971-08-01), Mueller
patent: 3819941 (1974-06-01), Carrico
patent: 3868507 (1975-02-01), Panitz
E. W. Muller, et al., "The Atom-Probe Field Ion Microscope," The Review of Scientific Instruments, vol. 39, No. 1, Jan. 1968, pp. 83-86.
J. A. Panitz, "The 10 cm Atom Probe," Review of Scientific Instruments, vol. 44, No. 8, Aug. 1973, pp. 1034-1038.
J. A. Panitz, "The Crystallographic Distribution of Field-Desorbed Species," J. Vac. Sci. Technology, vol. 11, No. 1, Jan./Feb. 1974, pp. 206-210.
E. W. Muller, et al., "Energy Deficits in Pulsed Field Evaporation and Deficit Compensated Atom-Probe Designs," Review of Scientific Instruments, vol. 45, No. 9, Sep. 1974, pp. 1053-1058.
C. Martin, et al., "Wedge-and -Strip Anodes for Centroid-Finding Position Sensitive Photon and Particle Detectors", : Rev. of Sci. Instruments, vol. 52, No. 7, Jul. 1981, pp. 1067-1074.
H. F. Liu, et al., "Numerical Calculation of the Temperature Evolution and Profile of the Field Ion Emitter in the Pulsed-Laser Time-of-Flight Atom Probe," Review of Scientific Instruments, vol. 55, No. 11, Nov. 1984, pp. 1779-1784.
T. J. Kinkus, et al., "Field Adsorption of Inert Gas Atoms on the Tungsten Surface-A Pulse-Laser Atom-Probe Study," Journal Vacuum Science Technology, vol. A3, No. 3, May/Jun. 1985, pp. 1521-1524.
H. G. Liu, et al., "Numerical Calculation of the Temperature Distribution and Evolution of the Field-Ion Emitter Under Pulse and Continuous-Wave Laser Irradiation," Journal Applied Physics, vol. 59, No. 4, Feb. 1986, pp. 1334-1340.
A. Cerezo, et al., "Development and Initial Application of a Position-Sensitive Atom Probe," Journal de Physique, Colloque C6, Supplement au No. 11, Tome 49, Nov. 1988, pp. C6-25 to C6-30.
W. Wetherell, et al., "General Analysis of Aplantic Cassegrain, Gregorian, and Schwarzschild Telescopes," Applied Optics, vol. 11, No. 12, Dec. 1972, pp. 2817-2832.
I. Louas, et al., "Design and Assembly of a High Resolution Schwarzschild Microscope for Soft X-Ray Optics," SPIE, vol. 316, High Resolution Soft X-Ray Optics, 1981, pp. 90-96.
D. L. Shealy, "Development of a Normal Incidence Multilayer Imaging X-Ray Microscope," SPIE, vol. 1160, X-Ray/EUV Optics for Astronomy and Microscopy, 1989, pp. 109-121.
K. Barnes, et al., "Beam Delivery Via the Reflecting Objective," Photonics Spectra, May 1990, pp. 105-109.
Kelly Thomas F.
Mancini Derrick C.
McCarthy Jon J.
Berman Jack I.
Wisconsin Alumni Research Foundation
LandOfFree
High-repetition rate position sensitive atom probe does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with High-repetition rate position sensitive atom probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-repetition rate position sensitive atom probe will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1401793