Heterogeneous system enclosure services connection

Electrical computers and digital processing systems: support – Computer power control – By external command

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S203000

Reexamination Certificate

active

06351819

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of The Invention
The invention relates to the field of computer system hardware maintenance and management, and in particular, to the integration of heterogeneous computer systems into a single computer maintenance and management system.
2. Background Information
The computer industry is presently expanding on approaches for providing System Enclosure Services (SES) in computer systems. As is generally understood in the art, System Enclosure Services refers to a number of computer system enclosure hardware maintenance and management/control functions, such as power supply and cooling system control.
As one example of a system enclosure services implementation, the American National Standard for Information Systems (ANSI) has proposed a model SES for Small Computer System Interconnect (SCSI) access to system services, i.e., power, cooling, indicators, etc., within an enclosure containing one or more SCSI devices, e.g., direct access storage devices (DASD's—hard disk drives), which is described in the working draft entitled “SES SCSI Enclosure Services,” X3T10/Project 1212-d/Rev 8a, Jan. 18, 1997. SCSI is a known bus standard.
System Enclosure Services (SES) includes a group of related functions aimed at, for example, sensing and controlling power and cooling apparatus, as well as managing vital product data (VPD) information, within a computer system. VPD is, generally speaking, hardware component identification information, such as the type of component, the model number, etc. A hardware component which can be serviced after a computer system has been assembled and delivered may be referred to herein as a field replaceable unit (FRU). The term FRU includes peripheral devices such as a floppy disk drive, for example, but also may include power supplies, input/output card devices, e.g., disk drive controllers and bus adapters, and even motherboards and backplanes. The associated VPD serves to identify an FRU so that particular characteristics of the FRU can be determined and taken into account in performing maintenance.
System Enclosure Services are generally provided by enabling low-level communication paths inside a computer enclosure and between computer enclosures, in the case of a computer system with multiple enclosures. In other words, the services are generally provided using a low-level network, which will be referred to as an SES network.
A typical SES network implementation would include a central Server node and multiple Workstation and PC (personal computer) nodes, for example. The SES Server node performs a variety of supervisory functions, such as managing the VPD information, e.g., collecting and configuring the VPD information, controlling power supplies, e.g., turning the power supplies ON and OFF, controlling cooling fans, and sensing component failures throughout the network, via the other network nodes.
A system power control network (SPCN) is known from U.S. Pat. No. 5,117,430, and from copending application Ser. No. 08/912,561, filed Aug. 18, 1997, entitled “FAIL-SAFE COMMUNICATIONS NETWORK FOR USE IN SYSTEM POWER CONTROL”, now U.S. Pat. No. 6,122,256, both of which are assigned to the same assignee as the present application. The SPCN communications network is a low volume serial network used to monitor and control power conditions at a plurality of nodes in a computer system, for example, the IBM AS/400 (IBM and AS/400 are registered trademarks of International Business Machines Corporation). The nodes typically include microprocessors which monitor the status of, and make occasional adjustments to, the power conditions at the respective nodes. The SPCN, therefore, by definition inherently provides system enclosure services and can be seen as an implementation of an SES network.
It is further known to use vital product data (VPD) for correlating the physical locations of system components with their corresponding logical addresses in a computer system, from the copending patent application Ser. No. 08/971,687, filed Nov. 17, 1997, entitled “METHOD AND APPARATUS FOR CORRELATING COMPUTER SYSTEM DEVICE PHYSICAL LOCATION WITH LOGICAL ADDRESS”, now U.S. Pat. No. 6,044,411, assigned to the same assignee as the present application. As described therein, memory, e.g., non-volatile random access memory (NVRAM), is provided on a backplane (e.g., a PCI backplane) and written with VPD information, such as the type of backplane, manufacture date, backplane serial number, type of slots on the backplane, etc., and this information is retained for use by the operating system if and when needed for service actions, upgrades, or for on-line configuration management and order processing.
Further, the VPD information may advantageously be accessed, for example, using an SPCN such as are disclosed in the above-mentioned U.S. Pat. No. 5,117,430 and in the other related application Ser. No. 08/912,561 (now U.S. Pat. No. 6,122,256).
A variety of adapter/connector/bus types and standards are known, and one of these is the peripheral component interconnect (PCI) standard. The PCI bus is a synchronous, processor independent, 32- or 64-bit bus (128-bit is imminent) that functions similarly to a processor local bus. The PCI bus can be thought of as a buffered intermediate or so-called mezzanine bus, that is, an extension of the processor local bus. It is coupled to the personal computer processor local bus by so-called “bridge” circuitry, but maintains its own separate set of circuits. The original PCI bus specification required a constant speed of 33 MHz, which translates to a transfer rate of 80-120 Mbs in a 32-bit environment, and up to a 264 Mbs transfer rate in a 64-bit environment. The PCI bus operates on 5 volts, 3.3 volts, or both. A 66 MHz PCI bus is now used, and 133 MHz is expected to be the next bus speed available.
Other standard types include ISA (Industry Standard Architecture—8/16 bits) and EISA (Expanded ISA—32 bits), SCSI (Small Computer System Interconnect), MCA (Micro Channel Architecture), VLB (VESA—Video Electronics Standard Association—Local Bus), AGP (Accelerated Graphics Port), and USB (Universal System Bus), to name just a few of the more prominent. The bus types generally have different maximum bus speeds, and newer bus types generally have higher bus speeds. For comparison purposes, the bus speeds can be referenced by the quantity of data transferred per second. The original IBM PC (IBM is a registered trademark of International Business Machine Corporation) had a bus speed of about 1 megabyte per second, the IBM AT about 4 megabytes per second, a typical ISA bus about 8 megabytes to a maximum of 16 megabytes per second, the EISA bus has 32 megabytes per second, the MCA bus 20-40 megabytes per second, the VESA VL-1 has 20-132 megabytes per second, the VESA VL-2 up to 264 megabytes per second, the PCI version 1.0 has 80-120 megabytes per second and the PCI version 2.0 up to 264 megabytes per second. Bus speeds can also be quantified by their clock frequency, e.g., in mega-Hertz (MHz).
Currently in the industry there are various initiatives to attempt to achieve the ‘lowest-cost’ Server network while achieving the highest possible form of ‘systems-management,’ such as the NetPC and Network Station paradigms. A few exemplary initiatives in this area are Microsoft's ZAW (Zero Administration for Windows), Intel's DMI (Desktop Management Interface), and Intel's IPMI (Intelligent Platform Management Interface). IPMI describes interfaces and a specific software command/register set running on DMI compliant hardware to perform SES functions. ZAW is application middleware that takes advantage of IPMI and DMI to enhance Systems Management features that ultimately lower the “TCO” (Total Cost of Ownership) of a Server network. Further information about these efforts/implementations can be obtained from their respective manufacturers.
These “homogeneous” concepts of SES, i.e., in network computers using the same operating system, have expanded to incorporate intelligent and in some cases ‘peer’ processing nodes

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heterogeneous system enclosure services connection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heterogeneous system enclosure services connection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heterogeneous system enclosure services connection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2985194

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.