Heated dilution water

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Beverage or beverage concentrate

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06423361

ABSTRACT:

This invention generally relates to a method for diluting highly concentrated brewed tea beverage solutions with water to form a final beverage while preserving the required clarity of the final beverage.
In many situations concentrated solutions of tea are desirable to simplify shipping and packaging costs and to deliver a beverage with brewed tea flavor without the actual requirement of having to freshly brew tea.
Dilute tea extracts, have been used in Food Service applications for years and relatively low concentration storage solutions have been employed, usually at a level of about 0.5% to 1.0% tea solids. There is no difficulty diluting these low concentration storage or tea extract solutions with water to form iced tea beverages. Generally the storage solutions are held at room temperature and mixed with cold water to form a beverage strength drink. In the case of iced tea, ice may then be added to form the final beverage.
Iced tea cannot be conveniently prepared by infusing traditionally manufactured tea leaves in cold water. Instead, the leaves are usually infused in hot water, removed, if necessary unless they are in a tea bag, and the beverage is then refrigerated until it is ready to consume. Alternately tea leaves, both loose and in bags, have been placed in water in sunlight to infuse slowly over a period of hours. A more convenient option is to prepare the iced tea beverage from a highly concentrated storage solution.
Shelf stable tea concentrates with high tea solids used to prepare these iced tea beverages are highly desirable and have several applications. These include: the ability to supply a brewed tea concentrate for uses in the Ready-to-Drink tea and Fountain tea products; as a tea concentrate product for retail sale; and as a preferred method of transporting tea solids. One advantage of the tea concentrate of the invention over a powder or a dilute tea extract is that better tea character is obtained. In addition, less energy is employed in manufacturing than for a powder and less weight and volume are needed for shipping a concentrate than for a dilute extract.
In the prior art, tea concentrates were considered to be physically unstable, which prevented their use in many tea products. However, it is believed that under certain conditions tea products made from tea concentrates have better quality (e.g., flavor, freshness, etc.) than powders and are more economical than tea powder or dilute tea extract. Therefore, it is highly desirable to have a shelf stable tea concentrate and consequently to have a method of preparing beverage strength iced tea of high quality and good clarity from these concentrates is also required.
If concentrated solutions of tea solids are diluted to form a final beverage with cold water it has been found that a significant amount of haze develops which renders the beverage unsightly. Accordingly a method for diluting high concentrations of tea to form a final beverage while preserving the clarity of the tea beverage is seen to be highly desirable.
It has now been discovered that acceptable clarity in preparing final beverages by dilution can be achieved if a selected amount of the dilution water is heated to a certain temperature. It has also been found that the quality of the dilution water is important.
In order to obtain an acceptable final beverage containing at least 0.2% tea solids a Hunter Haze Value of 50 or less in the final tea beverage must be achieved. The Hunter Haze Value is the value obtained on a Hunterlab DP 9000 Spectrophotometer at 60° F. in a 5 cm cell.
Thus, water temperature, as well as the quantity of water at a given temperature and water quality (hardness and alkalinity) can be used to control the clarity of a beverage produced by reconstituting a brewed tea concentrate when the beverage is chilled, for example for consumption.
It has been discovered that the use of a small amount of hot water to partially dilute a brewed tea concentrate will result in superior beverage clarity once the dilution is completed with cold water and the beverage is chilled. Higher temperatures of dilution water and a larger quantity of the heated dilution water directionally improve clarity. It has also been found that using low hardness water for the initial dilution will result in improved clarity.
In order to achieve the goal of shelf stable tea concentrates which can then be employed with the invention, selected amounts of carbohydrates such as sucrose, high fructose corn syrup, corn syrup, oligosaccharides and the like have been employed. High fructose corn syrup has been found to be the most effective carbohydrate.
Tea extracts from continuous or batch extraction using specified enzyme treated or extracted tea leaves (i.e., green, black and oolong tea) may be employed. The extracts are preferably centrifuged and then concentrated by, for example, evaporation. The carbohydrate is added either before or after evaporation and preferably after to achieve a final concentration of 12 to 20% (w/w) on a tea solids basis of the concentrate. A shear force is used to mix the concentrate. The stabilized concentrate is pasteurized, aseptically packed or preserved and acidified to a pH below 4.6, and stored at ambient temperature. Products made from the concentrate have a fresh brewed tea flavor and good clarity.
The concentrate used with the invention has a concentration of brewed tea solids of about 5% to 30%, preferably 12% to 20%, and employs a companion carbohydrate such as sucrose, or preferably, corn syrup, or high fructose corn syrup preferably with a DE of 42 or 55, so that the ratio of carbohydrate solids to tea solids is about 1 part carbohydrate to 1 part tea to about 2 or more parts carbohydrates to 1 part tea, and preferably, at least 1.5 parts carbohydrate to 1 part tea. The carbohydrate should be of a type and at a level such that it does not impart significant sweetness when the concentrate is diluted to the beverage strength drink. Other materials may also be used but the total solids (solute) concentration including tea, HFCS, or other carbohydrate, and any other additives such as acidulants, preservatives and colorants, if desired, to ensure stability is preferably at least about 45% or higher. Lower amounts may also be used of 30 to 45% but the stability will be affected. In order to insure the microbiological stability of the storage solution or “concentrate”, a pH of about 4.6 or lower is used. This may contribute to the physical instability of the concentrate. Of course, if the tea concentrate is processed thermally and aseptically packaged, a higher pH such as the native pH of tea of about 5.0 or higher may be used instead of a pH of 4.6 or less.
The preferred preservatives are sorbate and benzoate, preferably sodium benzoate and potassium sorbate but any preservatives commonly used in tea beverage may be used. Typical beverage strength iced teas prepared from current fountain tea dilute extracts contain about 100-200 ppm each of sorbate and benzoate because of the lower amount of total solids in the extract of the art, but the concentrate of the invention which is roughly 20 times more concentrated reduces this level in the beverage strength to about 10 to 12 ppm. Lower amounts of preservatives in the final beverage are beneficial for taste.
The viscosity of the brewed tea concentrate of the invention is 10 to 200 centipoise as measured by a Brookfield LVT Viscometer with a #2 spindle at 60 rpm and 25° C. temperature. Further, this brewed tea concentrate must produce a “brewed” tea flavor as judged by trained tea tasters when diluted to a level of about 0.2% tea and must also have a Hunter haze value of 40 or less as measured on a Hunter DP9000 spectrophotometer in a 5 cm. cell.
Based on the solids concentration, including tea solids, HFCS or other carbohydrates and other desired ingredients, the specific gravity of the concentrate will vary between about 1.21 g/cc and about 1.32 g/cc.
Further, the concentrate of the invention must be made from real tea and must contain about 0.4% to 2.0% caffeine, abo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heated dilution water does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heated dilution water, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heated dilution water will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2855078

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.