Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Protein – amino acid – or yeast containing
Reexamination Certificate
1999-06-25
2001-02-13
Bhat, Nina (Department: 1761)
Food or edible material: processes, compositions, and products
Products per se, or processes of preparing or treating...
Protein, amino acid, or yeast containing
C426S573000, C426S577000, C426S508000, C530S362000, C424S492000, C424S494000, C424S498000, C424S499000
Reexamination Certificate
active
06187368
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to fat-like protein compositions for use in foods and cosmetics. The food art is continuously searching for improved fat substitutes which retain the texture, taste and appearance of fatty substances, and which can be used in a variety of food products. While the art has developed a number of products which have attempted to solve this problem, these products are often either poor fat substitutes, impractical to produce, or both. Moreover, products containing fats and oils often have a short shelf life.
In the cosmetic art, there is a need for improved substances capable of complexing with numerous cosmetic substances to extend shelf life, and enhance stability and delivery of these substances.
Various types of protein compositions and processes for their formation have been described in the patent literature. U.S. Pat. Nos. 5,021,248 and 5,145,702 (to Stark and Gross) describe water-insoluble proteins (prolamines) which are denatured and precipitated from alcoholic solutions, and then dispersed under shear as microparticles. However, a special apparatus providing for controlled feed of reactants and for dispersion by rapid stirring is required for this process. These products are stable only up to 70° C. (158° F.), making them unsuitable as a fat replacement for baking or similar purposes.
U.S. Pat. Nos. 4,855,156 and 4,961,953 (to Singer), and U.S. Pat. Nos. 5,147,677 (Ziegler), 5,173,322 (Melachouris), EP/0345226 (to Habib), EP/0340035 (to Chen), and WO90/05460 (to Liao) describe precipitation by heat-denaturation and microparticulation by shear (in a special apparatus) of water-soluble proteins such as egg white, casein, whey protein and cereal proteins, with addition, in some instances, of lecithin, polysaccharides, and other substances.
U.S. Pat. No. 5,374,441 to Gibson et al. describes precipitation and microparticulation of water-soluble proteins by heat-denaturation under shear, combined with a crosslinking reaction using phenolic acids and an oxidizing agent. The microparticles produced by this process are stable at temperatures of 350-400° F. when used for baking. This product, while having certain desirable properties, is difficult to manufacture on a large scale because it requires an injection step and high-shear agitation.
U.S. Pat. No. 4,734,287 to Singer, et al. describes protein product bases produced by subjecting sweet whey to high shear while simultaneously heating the whey to produce the proteinaceous microparticles.
U.S. Pat. No. 4,308,294 issued Dec. 29, 1981 to Rispoli et al. describes oil replacement compositions prepared by formation of a protein phase, forming a separate acid modified starch phase, heating the acid starch phase to swell the starch, followed by cooling and mixing the protein and acid phases.
SUMMARY OF THE INVENTION
The invention relates to fat-like protein compositions for use in foods, cosmetics, pharmaceuticals, and the like. The compositions comprise water-insoluble microparticle compositions comprising protein, carbohydrate, and phospholipid stabilized by cross-linking them with naturally occurring phenolic acids. The protein portion comprises gelatin or a water-soluble heat-denaturable albumin or a combination of these ingredients. The carbohydrates comprise at least one polysaccharide having ionizable groups, and the phospholipids comprise a mixture of charged and uncharged phospholipids. These microparticles can function as a fat replacement in foods, cosmetics or pharmaceuticals. They can also serve to form complexes with a variety of oils or other lipids. The invention also relates to methods for making these compositions. Complex coacervates in the form of water-insoluble microparticles are generated when solutions of gelatin, an albumin, and a polysaccharide are mixed at between about 40° C. and about 45° C., and then acidified. This temperature is important because in order to blend the two proteins, the temperature must ordinarily be above the 37° C. melting temperature of the gelatin but below the temperature range where albumins denature (45-60° C.). The gelatins include acid-processed and alkali-processed gelatins. The albumins include, but are not limited to, egg white, casein, and soy protein. The polysaccharides include, but are not limited to, apple pectin, citrus pectin, sugar beet pectin, carrageenan, alginate, and carboxymethyl cellulose. A variety of art-known albumins and polysaccharides are suitable for use in the instant invention.
As used herein, the term “complex coacervation” is understood to mean the aggregation of colloidal polyelectrolytes from solution when they have acquired opposite net ionic charges, brought about by an appropriate pH change. In contrast to other processes that generate microparticles by heat-denaturation, the present process uses coacervation without any denaturation by heat. The gelatin component, in fact, cannot be denatured this way. The particle size, yield, and rigidity of the coacervates is affected by the concentrations and pH levels used. It is understood that those skilled in the art can modify the pH and concentrations according to their specific needs.
The present process provides for optional subsequent heat treatment, but this step is not an essential part of this invention. Coacervates are more easily generated in high yields when the gelatin solution is first blended with the albumin solution and the phospholipid solution prior to mixing with the polysaccharide solution and acidification. Further, it has been found that the resulting coacervates can be stabilized by adding a phenolic acid, and allowing a crosslinking reaction of such acids with the proteins in the microparticles to proceed under oxidizing conditions. Phenolic acids are understood to include hydroxylated and/or alkoxylated cinnamic and benzoic acids. Such substituted cinnamic acids include, for example, caffeic, ferulic, coumaric, and chlorogenic acids. Such substituted benzoic acids include, for example, vanillic, syringic, ellagic, and gallic acids. Also included are glycosidic derivatives of all such acids and their esters. Additionally, it has been found that the phenolic acids need not be added as the purified compounds but can be added in the form of a natural extract of potato, coffee (green or roasted), tea, grapes, plums, or other fruit, all of which are rich sources of the above phenolic acids or by using a phenolic acid-containing polysaccharide as the carbohydrate portion of the ingredients. It has also been discovered that the crosslinking reaction occurs under the combined effects of alkaline pH and exposure to atmospheric oxygen, thus eliminating the need of an added oxidizing agent. While other crosslinking agents (such as formaldehyde and gluteraldehyde) are suitable for use in the instant invention, phenolic crosslinking is the preferred method for use in food or health products.
As noted above, the crosslinked coacervates can optionally be further stabilized by briefly heating the aqueous suspension of microparticles to boiling. This step can be performed before or after the crosslinking step. The final suspension can then be concentrated by centrifugation or filtration, and washed free of uncoacervated material by washing.
This basic process can be modified in several ways. The size of the microparticles can be controlled between about 0.1 up to several hundred micrometers by varying the pH levels and concentration during the coacervation step. Removal of uncoacervated material is optional. The degree of crosslinking can be controlled by varying the amount of phenolic acid or by using a phenolic acid-containing polysaccharide as the carbohydrate portion of the ingredients introduced by the natural extract, and by varying the time and temperature of incubation of the alkaline solution.
The resulting product is a concentrated suspension of microparticles, having a semi-solid consistency. It can be used as replacement, with only one-half the calorific value, of some or all the fat normally present in foods, including foods baked at
Gibson Suzanne M.
Strauss George
Bhat Nina
Mathews, Collins Shepherd & Gould P.A.
LandOfFree
Heat-stable protein microparticles and no-shear process for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat-stable protein microparticles and no-shear process for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat-stable protein microparticles and no-shear process for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2586857