Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making
Reexamination Certificate
1999-01-22
2003-01-28
Baxter, Janet (Department: 1752)
Radiation imagery chemistry: process, composition, or product th
Imaging affecting physical property of radiation sensitive...
Radiation sensitive composition or product or process of making
C430S302000, C430S348000, C430S495100, C430S944000, C430S945000, C430S964000, C101S454000, C101S465000
Reexamination Certificate
active
06511782
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a heat sensitive material for making a lithographic printing plate. The present invention further relates to a method for preparing a printing plate from said heat sensitive material.
BACKGROUND OF THE INVENTION.
Lithography is the process of printing from specially prepared surfaces, some areas of which are capable of accepting lithographic ink, whereas other areas, when moistened with water, will not accept the ink. The areas which accept ink form the printing image areas and the ink-rejecting areas form the background areas.
In the art of photolithography, a photographic material is made imagewise receptive to oily or greasy ink in the photo-exposed (negative working) or in the non-exposed areas (positive working) on a hydrophilic background.
In the production of common lithographic plates, also called surface litho plates or planographic printing plates, a support that has affinity to water or obtains such affinity by chemical treatment is coated with a thin layer of a photosensitive composition. Coatings for that purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic photopolymers. Particularly diazo-sensitized systems are widely used.
Upon imagewise exposure of the light-sensitive layer the exposed image areas become insoluble and the unexposed areas remain soluble. The plate is then developed with a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
On the other hand, methods are known for making printing plates involving the use of imaging elements that are heat sensitive rather than photosensitive. A particular disadvantage of photosensitive imaging elements such as described above for making a printing plate is that they have to be shielded from the light. Furthermore they have a problem of sensitivity in view of the storage stability and they show a lower resolution. The trend towards heat sensitive printing plate precursors is clearly seen on the market.
For example, Research Disclosure no. 33303 of January 1992 discloses a heat sensitive imaging element comprising on a support a cross-linked hydrophilic layer containing thermoplastic polymer particles and an infrared absorbing pigment such as e.g. carbon black. By image-wise exposure to an infrared laser, the thermoplastic polymer particles are image-wise coagulated thereby rendering the surface of the imaging element at these areas ink acceptant without any further development. A disadvantage of this method is that the printing plate obtained is easily damaged since the non-printing areas may become ink accepting when some pressure is applied thereto. Moreover, under critical conditions, the lithographic performance of such a printing plate may be poor and accordingly such printing plate has little lithographic printing latitude.
EP-A-514 145 discloses a heat sensitive imaging element including a coating comprising core-shell particles having a water insoluble heat softenable core component and a shell component which is soluble or swellable in aqueous alkaline medium. Red or infrared laser light directed image-wise at said imaging element causes selected particles to coalesce, at least partially, to form an image and the non-coalesced particles are then selectively removed by means of an aqueous alkaline developer. Afterwards a baking step is performed. However the printing endurance of a so obtained printing plate is low.
EP-A-599 510 discloses a heat sensitive imaging element which comprises a substrate coated with (i) a layer which comprises (1) a disperse phase comprising a water-insoluble heat softenable component A and (2) a binder or continuous phase consisting of a component B which is soluble or swellable in aqueous, preferably aqueous alkaline medium, at least one of components A and B including a reactive group or precursor therefor, such that insolubilisation of the layer occurs at elevated temperature and/or on exposure to actinic radiation, and (ii) a substance capable of strongly absorbing radiation and transferring the energy thus obtained as heat to the disperse phase so that at least partial coalescence of the coating occurs. After image-wise irradiation of the imaging element and developing the image-wise irradiated plate, said plate is heated and/or subjected to actinic irradiation to effect insolubilisation. However the printing endurance of a so obtained printing plate is low.
EP-A-625 728 discloses an imaging element comprising a layer which is sensitive to UV- and IR-irradiation and which can be positive or negative working. This layer comprises a resole resin, a novolac resin, a latent Bronsted acid and an IR-absorbing substance. The printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
U.S. Pat. No. 5,340,699 is almost identical with EP-A-625 728 but discloses the method for obtaining a negative working IR-laser recording imaging element. The IR-sensitive layer comprises a resole resin,a novolac resin, a latent Bronsted acid and an IR-absorbing substance. The printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
U.S. Pat. No. 4,708,925 discloses a positive working imaging element including a photosensitive composition comprising an alkali-soluble novolac resin and an onium-salt. This composition can optionally contain an IR-sensitizer. After image-wise exposing said imaging element to UV—visible—or eventually IR-radiation followed by a development step with an aqueous alkali liquid there is obtained a positive working printing plate. The printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
EP-A-96 200 972.6 discloses a heat sensitive imaging element comprising on a hydrophilic surface of a lithographic base an image forming layer comprising hydrophobic thermoplastic polymer particles dispersed in a water insoluble alkali soluble or swellable resin and a compound capable of converting light into heat, said compound being present in said image forming layer or a layer adjacent thereto, wherein said alkali swellable or soluble resin comprises phenolic hydroxy groups and/or carboxyl groups. However by exposure with short pixel times of said heat-sensitive imaging element there occurs ablation on the exposed areas resulting in an insufficient ink acceptance.
Analogous imaging elements comprising on a hydrophilic surface of a lithographic base an image forming layer comprising hydrophobic thermoplastic polymer particles dispersed in a water or alkali soluble or swellable resin and a compound capable of converting light into heat, said compound being present in said image forming layer or a layer adjacent thereto are disclosed in e.g. EP-A-770 494, EP-A-770 495, EP-A-770 496, EP-A-770 497, EP-A-773 112, EP-A-773 113, EP-A-774 364, EP-A-800 928, EP-A-96 202 685, EP-A-96 203 003, EP-A-96 203 004 and EP-A-96 203 633. In most of these applications poly(meth)acrylate latices are used as thermoplastic polymer particles and no specific hydrophilic resin is mentioned. In most cases carbon black or an IR-dye are mentioned as the compound capable of converting light into heat.
In order to prepare an imaging element as described above, that is processable on the press, preferably IR-dyes should be used. Carbon black causes indeed a soiling on the press when removing the unexposed areas. On the other hand when using IR-dyes the unexposed areas are not completely dissolved when developing on the press resulting in scumming.
Furthermore the ink acceptance and the sensitivity of said imaging elements could use some improvement.
OBJECTS OF THE INVENTION
It is an object of the present invention to provide a heat sensitive imaging element with a high sensitivity and developable on a press.
It is a further object of the present invention to provide a heat sensitive imaging element for making in a convenient way a lithographic printing plate having excellent ink
Damme Marc Van
Vermeersch Joan
Agfa-Gevaert
Baxter Janet
Breiner & Breiner L.L.C.
Gilliam Barbara
LandOfFree
Heat sensitive element and a method for producing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Heat sensitive element and a method for producing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat sensitive element and a method for producing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3015945