Surgery – Means for introducing or removing material from body for... – Infrared – visible light – ultraviolet – x-ray or electrical...
Reexamination Certificate
2001-04-23
2004-03-16
Kennedy, Sharon (Department: 3762)
Surgery
Means for introducing or removing material from body for...
Infrared, visible light, ultraviolet, x-ray or electrical...
C600S372000
Reexamination Certificate
active
06708060
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to methods and devices for drug delivery and analyte extraction, and specifically to medical methods and devices for puncturing the outer layer of living skin and to methods and devices for transdermal drug delivery and analyte extraction.
BACKGROUND OF THE INVENTION
A number of different methods have been developed to perform transdermal drug delivery and/or analyte extraction, including passive diffusion of a drug or analyte between a skin patch and skin, as well as active processes such as iontophoresis, sonophoresis, electroporation, and chemically enhanced diffusion. These methods are primarily used for generating transdermal movement of small molecules, but generally do not enhance the motion of large molecules through the 10-50 micron thick outermost layer of the skin, the stratum corneum epidermidis.
In an article, “Micromachined needles for the transdermal delivery of drugs,” IEEE 11th Annual International Workshop on Micro-Electro-Mechanical Systems (1998), pp. 494-498, which is incorporated herein by reference, Henry et al. discuss a method of mechanically puncturing the skin with microneedles in order to increase the permeability of skin to a test drug. In the article, microfabrication techniques are described to etch an array of needles in silicon, and experiments performed on cadaver skin with the needle array demonstrated an increase in permeability subsequent to puncture of the skin. The needles are created with a predetermined length, and penetrate to the same depth from the skin surface, regardless of the local thickness of the stratum corneum. It is known that if the needles are longer than the local thickness, then the underlying epidermal tissue may be injured, while if the needles are too short, channel formation through the stratum corneum may be incomplete.
U.S. Pat. Nos. 4,775,361, 5,165,418, and 5,423,803, and PCT Publication WO 97/07734, the disclosures of which are incorporated herein by reference, describe methods of using laser pulses to locally heat the stratum corneum to about 120° C., thereby causing local ablation, in order to cause a single hole to develop in the stratum corneum through which large molecules may pass. Whereas some selectivity of ablation depth can be attained by varying the wavelength of the laser pulse, no feedback mechanism is disclosed whereby the laser pulses are terminated upon generation of the necessary damage to the stratum corneum.
PCT Publication WO 97/07734 also discloses thermal ablation of the stratum corneum using an electrically resistive element in contact with the stratum corneum, such that a high current through the element causes a general heating of tissue in its vicinity, most particularly the stratum corneum. As above, no means are disclosed to terminate current flow upon sufficient disruption of the stratum corneum. Additionally, thermal characteristics of skin vary highly across different areas of an individual's skin, as well as among a group of subjects, making optimal thermal dosages, which produce the desired ablation without causing pain, very difficult to determine. Lastly, increasing transdermal molecular flow by increasing the permeability of the stratum corneum, whether using microneedles, laser energy, or resistive heating of tissue, is inherently a two step process: (a) position apparatus to generate holes, and (b) apply a patch to the skin, through which the molecules will flow.
Electroporation is also well known in the art as a method to increase pore size by application of an electric field. This process is described in an article by Chizmadzhev et al., entitled “Electrical properties of skin at moderate voltages,” Biophysics Journal, February, 1998, 74(2), pp. 843-856, which is incorporated herein by reference. Electroporation is disclosed as a means for transiently decreasing the electrical resistance of the stratum corneum and increasing the transdermal flux of small molecules by applying an electric field to increase the size of existing pores. Electroporation generally does not produce pores of sufficient diameter to pass large molecules therethrough. Additionally, optimal voltage profiles are difficult to determine because of naturally occurring variations as described hereinabove, as well as the lack of an accurate feedback mechanism to indicate achievement of the desired pore enlargement. If excessive voltage is applied, an irreversible breakdown occurs, resulting in damage to the skin and possible sensations of pain.
U.S. Pat. No. 5,019,034 to Weaver et al., whose disclosure is incorporated herein by reference, describes apparatus for applying high voltage, short duration electrical pulses on the skin to produce electroporation, and states that “ . . . reversible electrical breakdown . . . along with an enhanced tissue permeability, is the characteristic effect of electroporation.”
SUMMARY OF THE INVENTION
It is an object of some aspects of the present invention to provide improved apparatus and methods for transdermal delivery of an active substance.
It is a further object of some aspects of the present invention to provide improved apparatus and methods for transdermal analyte extraction.
It is yet a further object of some aspects of the present invention to provide improved apparatus and methods for creating narrow channels through the stratum corneum of living skin by puncturing.
It is still a further object of some aspects of the present invention to provide improved apparatus and methods for reducing sensation and minimizing damage to skin underlying the stratum corneum during channel creation.
It is an additional object of some aspects of the present invention to provide improved apparatus and methods for controlling the timing of channel creation.
It is yet an additional object of some aspects of the present invention to provide improved apparatus and methods for regulating channel creation responsive to properties of the skin.
It is another object of some aspects of the present invention to provide improved apparatus and methods for puncturing the skin and/or transdermally delivering an active substance and/or transdermally extracting an analyte, using a miniature, self-contained device.
It is yet another object of some aspects of the present invention to provide improved apparatus and methods for transdermally delivering an active substance using a standard medical skin patch.
In preferred embodiments of the present invention, a device for enhancing transdermal movement of a substance comprises: (a) a skin patch, with at least two electrodes in contact with the skin of a subject; and (b) a control unit, coupled to the patch, which causes a current to pass between the electrodes through the stratum corneum epidermidis, in order to generate at least one micro-channel in the stratum corneum to enable or augment transdermal movement of the substance. Preferably, the control unit comprises switching circuitry to control the magnitude and/or duration of the electric field at the electrode.
The term “micro-channel” as used in the context of the present patent application and in the claims refers to a pathway generally extending from the surface of the skin through all or a significant part of the stratum corneum, through which pathway molecules can diffuse. Preferably, micro-channels allow the diffusion therethrough of large molecules at a greater rate than the same molecules would diffuse through pores generated by electroporation. It is believed that such micro-channels are formed due to local power dissipation leading to ablation of the stratum corneum when an electric field of sufficient magnitude is applied to a small area of the skin, in contact with the electrodes, for a certain period of time. Unlike methods of electrically-promoted drug delivery known in the art, such as iontophoresis and electroporation, the present invention enables relatively large channels to be formed, through which even large molecules of the active substance can pass rapidly, without the necessity of ionizing or polarizing the
Avrahami Zohar
Sohn Ze'ev
Abelman ,Frayne & Schwab
Kennedy Sharon
Transpharma Ltd.
LandOfFree
Handheld apparatus and method for transdermal drug delivery... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Handheld apparatus and method for transdermal drug delivery..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Handheld apparatus and method for transdermal drug delivery... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3245162