Hammer having integral stud and mains sensor

Electricity: measuring and testing – Impedance – admittance or other quantities representative of... – Lumped type parameters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S642000, C324S067000

Reexamination Certificate

active

06188228

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention provides means for finding a support member hidden behind a building surface and for inserting a nail or similar fastener into the support member. In the preferred embodiment a composite tool for construction and remodeling of houses and other buildings is provided by the combination of a capacitive stud sensor with a carpenter 's hammer.
2. Background Information
Many buildings have walls, ceilings or floors constructed so that supporting structural members (e.g., wall studs) are concealed behind a surface (eg., a plasterboard wall panel). It is often desirable to determine the location of the hidden structural members—e.g., when one wishes to drive a nail into wall stud in order to hang a picture or other object on the wall. Many approaches to this problem have been proposed and used. These include tapping on the wall and estimating the stud 's location from the quality of the sound, as well as moving a pivotally-mounted permanent magnet along the wall to find the ferromagnetic nails or screws that a previous worker had used to hold up the wallboard.
Of particular interest to the present invention is the prior art of locating a hidden structural member by using a capacitive sensor responsive to a change in the effective dielectric constant of the wall created by the presence of that member. Notable among the prior patent art in this area are:
U.S. Pat. No. 4,099,118, wherein Franklin et al. teach a portable capacitive sensor to be moved along the wall and to visually indicate the proximity of a stud to an operator.
U.S. Pat. No. 4,464,622, wherein Franklin teaches a capacitive stud sensor comprising improved adjustment and calibration means. The disclosure of Franklin is herein incorporated by reference.
U.S. Pat. Nos. 4,853,617, and 4,992,741 wherein Douglas et al. teach an instrument comprising a metal detector and a capacitive sensor, the instrument also having a bar-graph display usable by the operator to more accurately determine the location of a hidden structural member. Douglas et al. also provide circuitry responsive to the AC power line frequency (e.g., 50 or 60 Hz) in order to warn the operator of the proximity of energized and unshielded electrical lines behind the wall. The teachings of Douglas et al. are herein incorporated by reference.
U.S. Pat. No. 5,352,974, wherein Heger teaches an improved capacitive sensor that informs its operator when a wall is too thick or too thin for stud detection and when the operator has (incorrectly) calibrated the instrument by placing it over a stud, rather than over a section of the wall between two adjacent studs.
U.S. Pat. No. 5,562,240, wherein Campbell teaches a tool comprising a nail gun, or the like, having a proximity sensor attached thereto, the composite tool further comprising a visual indicator to inform the operator when a firing end of the nail gun is aligned with a wall stud or other nail-receiving structural element.
Also of interest to the present invention is improved apparatus and method for making capacitive proximity measurements, as taught by the inventor in his U.S. Pat. No. 5,730,165, the disclosure of which is herein incorporated by reference.
BRIEF SUMMARY OF THE INVENTION
A composite tool of the invention comprises a hammer having a metal striking head electrically coupled to sensing electronics disposed in a handle of the hammer. The head can thus serve as a sensing plate portion of a capacitive sensor responsive to a change in the effective dielectric constant of a building surface caused by the proximity of a structural member hidden behind that surface. The head can also serve as a sensing electrode portion of a sensor used to sense the proximity of AC power lines hidden behind the surface. In a preferred embodiment, the hammer has a handle made of electrically insulating polymeric material, the handle having an electrical conductor axially threaded therethrough, the conductor electrically coupling the striking head to sensing electronics disposed within the handle.
The composite tool comprises indicator means displaying the proximity of a structural member, or of energized AC wiring to an operator. In a preferred embodiment, the indicator means comprises a visual bar-graph display capable of displaying an effective wall thickness when the head of the hammer is touched to the wall and moved thereacross. In another embodiment, the indicator means comprises a light emitting diode, or other such light source having a controllable flash rate and operated responsive to the effective wall thickness to signal the proximity of a structural member to an operator. Moreover, in some embodiments the composite tool of the invention may comprise other visual, audible, or tactile signaling means for indicating to an operator that the head of the hammer is adjacent an AC power line hidden behind a wall.
In addition to providing a capacitive proximity instrument for sensing and displaying the effective thickness of a building wall, a preferred embodiment of the invention also comprises a second capacitive sensing means for sensing the proximity of an operator and for activating the first capacitive proximity measurement means responsive thereto. In a preferred embodiment, the proximity instrument is built into a hammer having a metal striking head and an electrically insulating handle.


REFERENCES:
patent: 4099188 (1978-07-01), Franklin et al.
patent: 4464622 (1984-08-01), Franklin
patent: 4853617 (1989-08-01), Douglas et al.
patent: 4992741 (1991-02-01), Douglas et al.
patent: 5296806 (1994-03-01), Hurl, Jr.
patent: 5352974 (1994-10-01), Heger
patent: 5457394 (1995-10-01), McEwan
patent: 5512834 (1996-04-01), McEwan
patent: 5562240 (1996-10-01), Campbell
patent: 5730165 (1998-03-01), Philipp
“The QProx Electronic Hammer”, Quantum Research Group, Ltd., by H. Philipp. A catalog page published on the internet at http://interquant.com/hammer.htm and printed out on Jul. 6, 1998.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hammer having integral stud and mains sensor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hammer having integral stud and mains sensor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hammer having integral stud and mains sensor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2605889

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.