Group 8, 9 or 10 transition metal catalyst for olefin...

Organic compounds -- part of the class 532-570 series – Organic compounds – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C549S006000, C549S061000, C549S074000, C549S214000, C549S216000, C549S474000, C549S476000, C549S491000, C558S073000, C502S155000

Reexamination Certificate

active

06339161

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to late transition metal complexes; a process for their preparation and their use in the polymerization of olefins.
BACKGROUND OF THE INVENTION
The papers Organometallics, 10, 1421-1431, 1991; Inorg. Chem., 34, 4092-4105, 1995; J. Organomet. Chem., 527(1-2), 263-276, 1997; and Inorg. Chem., 35(6), 1518-28, 1996, report the reaction of bis (iminophosphoranyl) methane (BIPM) which are typically aryl substituted on the phosphorus atom and the nitrogen with group VIII metal halides (chlorides) further comprising at two weakly coordinating ligands (L) such as nitriles or cyclooctadiene, afforded several products depending on the reaction time, type of ligand or nature of the metal. The product could be a N—C chelating type product or a N—N chelating product (similar to those of the present invention).
The products contain alkyl bridge between the phosphinimine groups and the references do not disclose the tridentate transition metal complexes of the present invention. Further, none of the references teach or suggest the use of such compounds for the polymerization of alpha olefins.
U.S. Pat. No. 5,557,023 issued Sep., 1996 teaches the use of some phosphinimines complexes to oligomerize alpha olefins. However, the complexes disclosed are not bis-imine complexes. Rather, the complexes are of the structure indicated below.
wherein R, Q, etc. are as defined in the patent. The structures disclosed in the patent are not the bis-imines of the present invention. While the reference does teach oligomerization, it does not suggest polymerization.
WO 98/30609 patent application published Jul. 16, 1998 assigned to E. I. Du Pont de Nemours teaches the use of various complexes of nickel to polymerize alpha olefins. A close complex in the disclosure is compound XXXXI at the middle of page 9 and the associated description of the various substituents. While, the compound contains a cyclic bridge, a nickel heteroatom completes the cyclic bridge in the middle of the compound. The reference does not contemplate or disclose compounds of the present invention which have a tridentate functionality. The reference fails to disclose the subject matter of the present invention.
There are a number of patents and papers by Brookhart and/or Gibson disclosing the use of pyridine bridged bis-amine Group 8, 9 or 10 metals to polymerize olefins. However, such papers teach that copolymers are not produced (e.g. WO 98/27124). The present invention proved copolymers of olefins made using an iron (or cobalt) based catalyst.
WO 98/47933 published Oct. 29, 1998 to MacKenzie et al, assigned to Eastman Chemical Company teaches bidentate amino-imine complexes of iron, cobalt, nickel and palladium for the polymerization of olefins. The complexes do not contemplate the presence of a sulfur, oxygen or phosphorus atom in the ligand bound to the iron, cobalt, nickel or palladium metal atom. As such the reference teaches away from the subject matter of the present invention.
WO 98/49208 published Nov. 5, 1998 in the name of Bres et al, assigned to BP Chemicals Limited also discloses an amino-imine complex of nickel or palladium for the polymerization of alpha olefins. Again the reference teaches away from the subject matter of the present invention in that it does not teach nor suggest the presence of a sulfur, oxygen or phosphorus atom bound to the metal atom in the complex.
SUMMARY OF THE INVENTION
The present invention provides a ligand of formula I:
wherein W is selected from the group consisting of a sulfur atom, an oxygen atom and a phosphorus atom; Y and Z are independently selected from the group consisting of a carbon atom, a phosphorus atom and a sulfur atom; when Y is phosphorus m is 2, when Y is carbon or sulfur m is 1; when Z is phosphorus n is 2, when Z is carbon or sulfur n is 1; each R is independently selected from the group consisting of a hydrogen atom, and a hydrocarbyl radical or R taken together with Q may form a cyclic hydrocarbyl; R
1
and R
2
are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted hydrocarbyl radical which may contain one or more heteroatoms, preferably consisting of the group selected from silicon, boron, phosphorus, nitrogen and oxygen which may be bound directly or indirectly to the nitrogen atoms and a tri-C
1-4
alkyl silyl radical; Q is a divalent unsaturated hydrocarbyl radical or a divalent radical comprising hydrogen, carbon and one or more heteroatoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom and a boron atom, and Q when taken together with W forms one or more unsaturated rings, which unsaturated cyclic rings may be unsubstituted or may be fully substituted by one or more substituents independently selected from the group consisting of a halogen atom and an alkyl radical.
The present invention further provides a process for the polymerization of one or more C
2-12
alpha olefins in the presence of an activated complex of formula II:
wherein M is a Group 8, 9 or 10 metal; W is selected from the group consisting of a sulfur atom, an oxygen atom and a phosphorus atom; Y and Z are independently selected from the group consisting of a carbon atom, a phosphorus atom and a sulfur atom; when Y is phosphorus m is 2, when Y is carbon or sulfur m is 1; when Z is phosphorus n is 2, when Z is carbon or sulfur n is 1; each R is independently selected from the group consisting of a hydrogen atom, and a hydrocarbyl radical or R taken together with Q may form a cyclic hydrocarbyl; R
1
and R
2
are independently selected from the group consisting of a hydrogen atom, a substituted or unsubstituted hydrocarbyl radical which may contain one or more heteroatoms, preferably consisting of the group selected from silicon, boron, phosphorus, nitrogen and oxygen which may be bound directly or indirectly to the nitrogen atoms and a tri-C
1-4
alkyl silyl radical; Q is a divalent unsaturated hydrocarbyl radical or a divalent radical comprising hydrogen, carbon and one or more heteroatoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom and a boron atom, and Q when taken together with W one or more unsaturated rings, which unsaturated cyclic rings may be unsubstituted or may be fully substituted by one or more substituents independently selected from the group consisting of a halogen atom and an alkyl radical, L is an activatable ligand and p is an integer from 1 to 3.
In a further aspect, the present invention provides a process for reacting one or more C
2-12
alpha olefins in a nonpolar solvent in the presence of the above catalyst with an activator at a temperature from 20° C. to 250° C.; and at a pressure from 15 to 15000 psi.
DETAILED DESCRIPTION
The term “scavenger” as used in this specification is meant to include those compounds effective for removing polar impurities from the reaction solvent. Such impurities can be inadvertently introduced with any of the polymerization reaction components, particularly with solvent, monomer and catalyst feed; and can adversely affect catalyst activity and stability. It can result in decreasing or even elimination of catalytic activity, particularly when an activator capable of ionizing the Group 8, 9 or 10 metal complex is also present.
The term “an inert functional group” means a functional group on a ligand or substituent which does not participate or react in the reaction. For example in the polymerization aspect of the present invention an inert functional group would not react with any of the monomers, the activator or the scavenger of the present invention. Similarly for the alkylation of the metal complex or the formation of the metal complex the inert functional group would not interfere with the alkylation reaction or the formation of the metal complex respectively.
As used in this specification an activatable ligand is a ligand removed or transformed by an activator. These include anionic substituents and/or bound ligands.
In the compounds of formula 11 above, preferabl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Group 8, 9 or 10 transition metal catalyst for olefin... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Group 8, 9 or 10 transition metal catalyst for olefin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Group 8, 9 or 10 transition metal catalyst for olefin... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2856070

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.