Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement
Reexamination Certificate
2002-07-22
2003-06-03
Talbott, David L. (Department: 2827)
Electricity: conductors and insulators
Conduits, cables or conductors
Preformed panel circuit arrangement
C174S261000, C361S760000, C361S772000, C361S776000, C257S690000, C257S781000
Reexamination Certificate
active
06573459
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates in general to microelectronic elements such as semiconductor chip assemblies, and more particularly, to flexible leads for use in such microelectronic elements, as well as methods of manufacturing same.
Semiconductor chips typically are connected to external circuitry through contacts on the surface of the chip. The contacts may be disposed in a grid on the front surface of the chip or in elongated rows extending along the edges of the chip's front surface. Each such contact must be connected to an external circuit element such as a circuit trace on a supporting substrate or circuit panel. In the conventional wire bonding process, the back surface of the chip is physically mounted on the substrate. A bonding tool bearing a fine wire is engaged with an individual contact on the face surface of the chip so as to bond the wire to the contact. The tool is then moved to a contact pad of the circuit on the substrate, while dispensing wire through the tool, until the tool engages the contact pad on the substrate and the wire is bonded thereto. This process is repeated for each contact.
In a tape automated bonding process, a dielectric supporting tape is provided with a hole slightly larger than the chip. Metallic leads are provided on the dielectric tape are cantilevered into the hole in the tape. An inner end of each lead projects inwardly beyond the edge of the hole. These plural leads are arranged side-by-side in rows. Each row of contacts on the chip is aligned with one such row of leads. The inner ends of the leads are bonded to the contacts of the chip by ultrasonic or thermocompression bonding. The outer ends of the leads are connected to the external circuitry.
The rapid evolution of the semiconductor art has created continued demand for incorporation of progressively greater numbers of contacts and leads in a given amount of space. U.S. Pat. No. 5,489,749, the disclosure of which is hereby incorporated by reference herein, offers one solution. As disclosed in certain embodiments of the patent, a semiconductor chip connection component may include a plurality of electrically conductive leads and may also include a support structure such as a flexible, dielectric film with a compliant, typically elastomeric underlayer disposed beneath the flexible film. Each such lead desirably is connected to a terminal disposed on the surface of the support structure. A connection section of each lead extends across a gap such as in the nature of a slot in the support structure. A first end of each connection section, connected to one of the terminals, is permanently attached to the support structure, whereas the opposite second end of the connection section is releasably attached to the support structure. For example, the second end of each connection section may be connected through a frangible section connecting the second end to a bus structure anchored on the support structure.
In certain processes disclosed in the '749 Patent, the connection component is juxtaposed with the chip so that the support structure, and preferably a compliant layer thereof, overlies the contact bearing surface of the chip and so that the gap or slot in the support structure is aligned with a row of contacts on the chip. This process serves to align each connection section with a contact on the chip. After placement of the connection component on the chip, each lead is engaged by a bonding tool. The bonding tool moves downwardly towards the surface of the chip. As the bonding tool moves downwardly, it disengages the second end of each lead connection section from the support structure, as by breaking the frangible section of the lead, and moves the connection section downwardly into engagement with the chip contact. At the same time, guide surfaces on the bottom of the bonding tool engage the connection section and guide it into more precise alignment with the associated contact. The bonding tool then bonds the connection section to the contact.
The end supported lead bonding processes according to the '749 Patent offer numerous advantages. Because each lead is supported at both ends prior to bonding, it can be maintained in position until it is captured by the bonding tool. The bonding tool will reliably capture the correct lead, and hence there is little chance that an incorrect lead will be bonded to a contact. Moreover, the products resulting from the disclosed processes allow free movement of the terminals on the support structure relative to the chip after connection, both in the X and Y directions, parallel to the chip surface, and in the Z or compliance direction perpendicular to the chip surface. Thus, the assembly can be readily tested by engaging a multiple probe test fixture with the terminals. When the terminals on the support structure are bonded to contact pads of a substrate, such as by solder bonding or other processes, the assembly can compensate for differential thermal expansion between the chip and the substrate, such as by flexing of the leads and deformation of the flexible support structure.
Certain components and processes disclosed in the '749 Patent can be used to fabricate microelectronic elements such as semiconductor chip assemblies with closely spaced leads. Merely by way of example, rows of connection sections may be provided side-by-side at center-to-center spacing of about 100 micrometers or less, and may be successfully bonded to the contacts of the chip. Additional improvements in the bonding structures and techniques, as set forth in the commonly assigned U.S. Pat. Nos. 5,398,863 and 5,491,302, the disclosures of which are hereby incorporated by reference herein, still further facilitate bonding of closely spaced leads and formation of reliable assemblies even where the leads are extremely small, using the basic techniques set forth in the '749 Patent.
Connection components typically have a reduced fatigue life. It is therefore desirable to provide leads with a structure which reinforces the lead, particularly in the fatigue susceptible regions of the lead. The most fatigue susceptible regions are those regions which are most distorted in the fabrication of the component, for example, in the shoulder region and heel region. Reinforcing at least these regions enhances the fatigue life of the connection component and completed assembly. It is also desirable to provide a lead structure which in addition to being reinforced against fatigue, promotes more efficient coupling of energy between the bonding tool and the bond interface between the bottom of the lead and the chip contact. This in turn allows reduced bonding force, bonding energy and/or bonding time, or provides a strong bond with the same force, energy and time so that connection components can be fabricated more economically.
In certain structures taught in co-pending U.S. patent application Ser. No. 09/179,273 filed on Oct. 27, 1998 entitled Layered Lead Structures, the disclosure of which is incorporated herein by reference, a connection component includes flexible leads incorporating a structural material such as copper, gold, alloys of these metals or other metals. Each lead is provided with a thin layer of a fatigue resistant alloy, such as the alloys commonly referred to as a shape memory alloys. The fatigue resistant alloy preferably is provided on the bonding or bottom side of the lead which is bonded to a contact during use of the component.
Most preferably, the layer of fatigue resistant alloy is provided at least in the bond region, i.e., the region of the lead which is bonded to the contact when the component is used to make connections with a microelectronic element. In particular, the fatigue resistant material is provided in the region of the lead which forms the “heel” of the bond. A layer of a readily bondable material such as gold, palladium or other metal compatible with the contact to which the lead is to be bonded is applied on the bottom or bond side of the lead covering the fatigue resistant alloy at least in th
Baker David R.
Wang Hung-Ming
Patel I B
Tessera Inc.
LandOfFree
Graded metallic leads for connection to microelectronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Graded metallic leads for connection to microelectronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Graded metallic leads for connection to microelectronic... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3147328