Gas displaced chamber lift system having a double chamber

Wells – Processes – Producing the well

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S105000

Reexamination Certificate

active

06237692

ABSTRACT:

TECHNICAL FIELD
The present invention relates to artificial lift systems. More particularly, the present invention relates to chamber lift systems which are used so as to deliver oil, water and gas from a wellbore to a surface above the wellbore. More particularly, the present invention relates to gas-displaced chamber lift systems.
BACKGROUND ART
At the present time, it is common to permit oil and gas wells to flow under their own natural pressure as long as they will do so and then to apply a mechanical reciprocating pump to complete the removal of the liquids. This method, although in general use, is cumbersome and unsatisfactory. Because suction will only raise oil for a distance of some thirty-five feet, it is necessary to have the pump near the bottom of the well so that it can exert pressure instead of suction on the liquids coming out of the well. This involves the use of pump rods of lengths of 5,000 feet or greater. In many instances when the pump plunger or the valves become worn, it is necessary to remove the pump from that depth to replace the worn parts. Furthermore, the collars on the pump rod wear rapidly and all the pump parts do likewise because of the small particles of grit that remain in the liquid and the whole device is mechanically inefficient because of the relatively long pump rods that must be reciprocated to perform the pumping operation.
When the natural flow of liquid from a well has ceased or becomes too slow for economical production, artificial production methods are employed. In many cases, it is advantageous, at least during the first part of the artificial production period, to employ gas lift. Numerous types of equipment for producing liquid by gas lift are available, but they all rely upon the same general principles of operation. In the usual case, dry gas consisting essentially of methane and ethane is forced down the annulus between the tubing and the casing and into the liquid in the tubing. As the liquid in the tubing becomes mixed with gas, the density of the liquid decreases, and eventually the weight of the column of the gasified liquid in the tubing becomes less than the pressure exerted on the body of liquid in the well, and the flow of liquid occurs at the surface. While, in some cases, the dry gas may be introduced through the tubing so as to cause production through the annulus, this is not preferred unless special conditions are present.
One known gas lift technique injects gas into the casing, which has been sealed or packed off at the bottom of the hole relative to the production tubing. A gas lift valve is placed in the production tubing at the production level, and the gas lift valve permits the gas to be injected into or bubbled very slowly into the liquid being produced from the well. This gas then makes the liquid in the production tube somewhat lighter and, hence, the natural formation pressure will be sufficient to push the liquid up and out of the well. This means that the well can be produced at a greater rate. This gas lift technique is known as continuous gas lift.
A further adaptation of this gas lift technique is known as intermittent gas lift. In this technique, rather than letting the gas enter the production tube slowly, the gas is injected into the production tubing very quickly, in short bursts, thereby forming a large slug of liquid in the production tubing above the injected gas bubble. The gas bubble then drives the slug of liquid in the production tubing upwardly. The technique is repeated successively, thereby producing successive slugs of liquid at the wellhead.
Another type of gas lift tool involves a procedure where a string of production tubing extending from the surface to the zone of interest is provided with a number of gas lift valves positioned at spaced intervals along the length of the tubing. Gas is injected from the annulus between the tubing and the well pipe through the gas lift valves and into the tubing for the purpose of forcing liquid upwardly to the surface and ultimately into a flowline that is connected with the production tubing. Gas lift systems for liquid production are quite expensive due to the cumulative expense of the number of gas lift valves that are ordinarily necessary for each well. Moreover, each of the gas lift valves must be preset for operation at differing pressures because of the vertical spacing thereof within the tubing string and because the valves must function in an interrelated manner to achieve lifting of liquid within the tubing string.
In the past, various patents have issued relating to such gas lift systems. For example, U.S. Pat. No. 5,671,813, issued on Sep. 30, 1997 to P. C. Lima describes a method and apparatus for the intermittent production of oil. In this method, two production strings extend downwardly from a wellhead of an oil well to a point adjacent a producing region. The lower ends of the two production strings are connected by a coupling which allows a mechanical interface launched adjacent the wellhead of one of the production strings to descend along the production string through the coupling and upwardly through the other production string to displace oil from the production strings to a surge tank. High pressure gas is utilized to move the mechanical interface through the production strings and suitable valves are provided for controlling the flow of gas and oil through the production strings.
U.S. Pat. No. 5,562,161, issued on Oct. 8, 1996 to Hisaw et al. describes a method of accelerating production from a well. This method includes the steps of installing a venturi device within the well. A gas is injected within the annulus and introduced into the well. The venturi device creates a zone of low pressure within the well as well as accelerating the velocity of the production fluid so that the inflow from the reservoir is increased.
U.S. Pat. No. 5,407,010, issued on Apr. 18, 1995 to M. D. Herschberger teaches an artificial lift system and method for lifting fluids from an underground formation. This artificial lift system includes a production tubing through which the fluid is carried from the formation to the surface and a pressure reducer, such as a venturi, connected to the production tubing to artificially raise the level of the fluid in the production tubing above the static level associated with the head pressure of the fluid in the formation.
U.S. Pat. No. 5,217,067, issued on Jun. 8, 1993 to Landry et al. describes an apparatus for increasing flow in an oil well which includes an injection valve so as to enable gas to be injected and to cause the oil or other liquid within the well to be lifted to the surface. The valve has a valve body having an inlet at one end and an outlet at the other end which are adapted to be fitted into conventional production oil tubing. A gas injection port opens into the outlet of the valve body and there is at least one gas inlet opening in a side of the valve body. This gas inlet opening is connected to the gas injection port. This enables compressed gas to be sent down the well between the casing and the tubing and injected through the gas injection port and into the flow of oil.
U.S. Pat. No. 5,211,242, issued on May 18, 1993 to Coleman et al. describes a chamber in a well which is connected to two externally separate tubing strings to unload liquid which is applying backpressure against a formation so that the production of fluid from the formation is obstructed. Volumes of the liquid are intermittently collected in the chamber and lifted out of the well through one of the tubing strings in response to high pressure gas injected solely into the chamber through the other tubing string.
U.S. Pat. No. 4,708,595, issued on Nov. 24, 1987 to Maloney et al. describes an intermittent gas-lift apparatus and process of lifting liquids. This apparatus includes a chamber on the downhole end of a production tubing in communication with a sidestring tube. The sidestring tube is in communication with the high pressure gas stored within the casing and above and below a packer. A valve in the sidestring tub

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gas displaced chamber lift system having a double chamber does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gas displaced chamber lift system having a double chamber, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas displaced chamber lift system having a double chamber will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563451

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.