Gas analyzer and a method for operating the same

Measuring and testing – Gas analysis – Detector detail

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S029020, C073S049300, C073S864010, C250S573000, C250S339120

Reexamination Certificate

active

06484562

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a gas analyzer having an analysis or sensor unit and having an electronic processing unit, and to a method for operating such a gas analyzer.
DESCRIPTION OF THE PRIOR ART
Many versions, and also many operating methods, are known for gas analyzers having a sensing unit and an electronic processing unit. In this case, use is made of gas sensors which, depending on configuration, are sensitively set to one or other gases depending on which one is desired for selective measurement. Electronic sensor systems, gel sensors, thermal conduction sensors and other similar sensors are known for this purpose. Solid electrolyte sensors are also known, in particular for oxygen analysis.
Also known, however, over and above this are optical gas analysis methods in the case of which a cuvette flowed through by measuring gas is transradiated starting from a light source of specific radiation bands. Arranged on the side of the cuvette opposite the light source is a detector which picks up a measurement signal based on an optopneumatic effect. The detector is sensitively set to the measuring gas component to be measured, and measures the residual signal remaining in terms of absorption after passage through the cuvette. This is inversely proportional to the partial pressure fraction of the measuring gas component in the measured gas sample. Because of this inversely proportional relationship, so-called absorption spectroscopy is also involved here. Such methods are generally used as absorption photometers with appropriate light sources.
In the case of use in process measurement techniques, that is to say in online measurement of industrial process cycles, for the most part gas samples are taken which are sent via the analyzer. Explosion protection precautions are to be taken for the eventuality that the gases are toxic or combustible.
In chemical process engineering, however, it is frequently necessary to solve measurement tasks in which one or more gas components in corrosive and/or toxic and/or combustible gases are to be analyzed. As a rule, the extractive measurement techniques currently on offer have special properties in order to meet the requirements of measurement techniques and safety. For this purpose, expensive use is made of specialists who are employed in potentially explosive atmospheres (ex-atmospheres) and also in corrosive and toxic gases together with housing purging (pressurized enclosure) and a pressure tight enclosure, that are to be monitored. It frequently happens that some damage has already occurred before the service staff can intervene.
It is therefore the object of the invention to improve a gas analyzer and a method for operating such in order substantially to improve safety both in handling corrosive and/or combustible and/or toxic gases in a not potentially explosive atmosphere (ex-free atmosphere) and in the operation of such an analyzer in an ex-atmosphere.
SUMMARY OF THE INVENTION
The solution according to the invention takes account in this case both for the gas analyzer and for the operating method both in the first case in which combustible gases are to be analysed in the ex-free atmosphere, and of the second case, in which the combustible gas is present in an ex-atmosphere. In the second-named case, it is necessary to add appropriate configurations, as described below.
Likewise to be distinguished are the gas analyzer groups already described at the beginning in the prior art. These are, firstly, the group of optical gas analyzers and also others such as the group of thermal conduction sensors and solid electrolyte or gel sensors.
The second-named case corresponds in essence to a gas analyzer in accordance with Claim 1. The core of the invention there consists in that in the case of the analysis of a toxic and/or corrosive and/or combustible gas the analysis or sensor unit as such is of nonexplosive (for example intrinsically safe) configuration and is arranged in a gastight chamber around which a second chamber is arranged. This case is that of a gas analyzer with an integrated sensor unit and integrated processing unit.
However, these are arranged in a common housing in separate parts of the same. The sensor region arranged inside the housing is correspondingly provided with a non-combustible sensor which is arranged in a first chamber, the second chamber then being arranged around this first chamber and thus being placed between a first chamber, containing the sensor, and the remaining space, in which the electronic system is arranged. This yields an appropriately ex-protected separation between the sensor chamber and electronic system. If toxic or combustible or corrosive gases are then fed to the sensor, they remain basically inside the first chamber, which contains the sensor. For safety purposes, the second chamber, which is arranged around the first chamber, shields the latter in turn.
It is provided in an appropriate refinement in the case of this variant apparatus that the second chamber is purged with an inert gas or with air. If a leak were to occur in this case through the first chamber, toxic or corrosive or combustible measuring gas would flow via this leakage only into the second chamber, which is, in turn, purged permanently by an inert gas. The effect, in turn, is to dispose of the leakage gas into a closed purging gas system, the leakage gas thereby being simultaneously substantially thinned by the purging. Consequently, in the way provided by the invention, not only is leakage counteracted, but leakage and/or the dangerous gas emerging because of the leakage can be diluted until it is unobjectionable, and thereby be branded safe.
In a second independent device claim, the correspondingly identical methodology is applied to an analyzer which is based on an optical detection method such as, for example, on absorption photometry. In this case, the element of corresponding consideration is the cuvette. The cuvette contains a measuring gas inlet and a measuring gas outlet. That is to say there is no gas contact with the detector as such, and the cuvette remains a closed system. In order now to fulfill the ex-protection preconditions in the way according to the invention, the said cuvette is surrounded either partially or completely by a second space.
A purging gas is fed inside this second space or the second chamber, if the cuvette is defined as a first chamber, and appropriately discharged again. The purging gas used must fulfill two preconditions in this case. Firstly, the purging gas must be inert or have at least essentially such properties, and, secondly, it is not permitted to effect any appreciable absorption of that radiation band which is directed sensitively to the measuring gas. The general absorption which occurs through the plurality of the windows now occurring can be taken into account by prior gauging or by calibration. Of course, it is also possible, going beyond this, also to take account of absorptive purging gas as well by appropriate calibration.
The same holds for the case of leakage and for the ex-protection as such as did for the first-named embodiment. If a leakage occurs in the critical region leading the toxic or corrosive or combustible measuring gas, specifically in the cuvette, the leakage gas enters only the second space, which surrounds the measuring cuvette. Since this space or this chamber is, in addition, permanently purged by means of purging gas, as in the first example there is a steady thinning of the critical gas. Likewise, the critical gas is led out of the system, and possibly out of the ex-atmosphere.
As already mentioned, it holds for both variants that the second chamber is purged with inert gas or with air.
Furthermore, according to the invention it is advantageously provided both for the first and for the second variant that a pressure higher by comparison with the first chamber is set in the second chamber. This also produces a delimitation in terms of gas dynamics by comparison with gas possibly escaping from the first chamber.
Furthermore, it is a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Gas analyzer and a method for operating the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Gas analyzer and a method for operating the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gas analyzer and a method for operating the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2935826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.