Functional food ingredient

Food or edible material: processes – compositions – and products – Products per se – or processes of preparing or treating... – Plant material is basic ingredient other than extract,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S656000

Reexamination Certificate

active

06423364

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a novel functional food ingredient, a process for producing such a novel functional food ingredient, and methods for using the novel functional food ingredient.
BACKGROUND OF THE INVENTION
Plant protein materials are used as functional food ingredients, and have numerous applications in enhancing desirable characteristics in food products. Soy protein materials, in particular, have seen extensive use as functional food ingredients. Soy protein materials are used as an emulsifier in meats—including frankfurters, sausages, bologna, ground and minced meats and meat patties—to bind the meat and give the meat a good texture and a firm bite. Another common application for soy protein materials as functional food ingredients is in creamed soups, gravies, and yogurts where the soy protein material acts as a thickening agent and provides a creamy viscosity to the food product. Soy protein materials are also used as functional food ingredients in numerous other food products such as dips, dairy products, tuna, breads, cakes, macaroni, confections, whipped toppings, baked goods and many other applications.
Plant protein concentrates and plant protein isolates are plant protein materials that are most commonly used as functional food ingredients due to: 1) their high protein content; and 2) their low oligosaccharide/carbohydrate content. Soy protein concentrates and soy protein isolates are the most highly refined commercially available soy protein containing products. Both soy protein concentrates and soy protein isolates are processed to increase soy protein content and to decrease oligosacharride content relative to whole soybeans and relatively unprocessed soy protein materials such as soy flakes, soy grits, soy meal and soy flour. Soy protein concentrates are processed to contain from 65% to about 80% soy protein and little or no water soluble oligosaccharides/carbohydrates, where the major non-protein component of a soy protein concentrate is fiber. Soy protein isolates, the most highly refined soy protein product, are processed to contain at least 90% soy protein and little or no water soluble oligosaccharides/carbohydrates or fiber.
Soy protein concentrates and soy protein isolates are particularly effective functional food ingredients due to the versatility of soy protein (and the relatively high content thereof in soy protein concentrates and isolates), and to the lack of raffinose and stachyose oligosaccharides which naturally occur in soybeans. Soy protein provides gelling properties which contribute to the texture in ground and emulsified meat products. The gel structure provides dimensional stability to a cooked meat emulsion which gives the cooked meat emulsion a firm texture and gives chewiness to the cooked meat emulsion, as well as provides a matrix for retaining moisture and fats. Soy protein also acts as an emulsifier in various food applications since soy proteins are surface active and collect at oil-water interfaces, inhibiting the coalescence of fat and oil droplets. The emulsification properties of soy protein allows soy protein containing materials to be used to thicken food products such as soups and gravies. Soy protein further absorbs fat, likely as a function of its emulsification properties, and promotes fat binding in cooked foods, thereby decreasing “fatting out” of the fat in the process of cooking. Soy proteins also function to absorb water and retain it in finished food products due to the hydrophilic nature of the numerous polar side chains along the peptide backbone of soy protein. The moisture retention of a soy protein material may be utilized to decrease cooking loss of moisture in a meat product, providing a yield gain in the cooked weight of the meat. The retained water in the finished food products is also useful for providing a more tender mouthfeel to the product.
Raffinose and stachyose oligosaccharides induce intestinal gas and flatulence in humans, therefore soy protein concentrates and soy protein isolates are processed to remove these compounds. Inexpensive but relatively unprocessed comminuted whole soybeans and soy flours, meals, grits, and flakes contain high levels of carbohydrates, especially raffinose and stachyose. Humans lack the &agr;-galactosidase enzyme needed to break down and digest complex oligosaccharides such as raffinose and stachyose into simple carbohydrates such as glucose, fructose, and sucrose which can be easily absorbed by the gut. Instead of being absorbed by the gut, soy raffinose and stachyose enter the lower intestine where they are fermented by bacteria to cause intestinal gas and flatus. Therefore, soy protein concentrates and soy protein isolates are often preferred as food ingredients over less highly processed soy protein containing materials such as comminuted whole soybeans, soy flours, soy grits, soy meal, and soy flakes.
The most significant drawback to use of soy protein concentrates and isolates as functional food ingredients is their cost, which is directly related to the degree of processing required to provide the high levels of protein and low levels of oligosaccharides desirable in a soy protein material food ingredient. Soy protein concentrates are formed from soy flakes by washing the flakes with either an aqueous alcohol solution or an acidic aqueous solution to remove the water soluble carbohydrates from the protein and fiber. On a commercial scale, the costs associated with handling and disposing the waste stream consisting of the wash containing the soluble carbohydrates are considerable.
Soy protein isolates are even more highly processed, and entail further expense, particularly on a commercial scale. Soy protein isolates are formed by extracting soy protein and water soluble carbohydrates from soy flakes or soy flour with an alkaline aqueous extractant. The aqueous extract, along with the soluble protein and soluble carbohydrates, is separated from materials that are insoluble in the extract, mainly fiber. The extract is then treated with an acid to adjust the pH of the extract to the isoelectric point of the protein to precipitate the protein from the extract. The precipitated protein is separated from the extract, which retains the soluble carbohydrates, and is dried after being adjusted to a neutral pH or is dried without any pH adjustment. On a commercial scale, these steps result in significant costs.
Therefore, in some food ingredient applications relatively unprocessed plant protein materials such as plant flours, plant grits, plant flakes, and plant meal are utilized when possible to reduce costs. Soy flours, soy grits and soy meals are produced from soy flakes by comminuting the flakes to a desired particle size, and heat treating the comminuted materials to inactivate anti-nutritional elements present in soy such a Bowman-Birk and Kunitz trypsin inhibitors. The flakes are typically comminuted by grinding the flakes in grinding and milling equipment such as a hammer mill or an air jet mill. The ground flakes are heat treated with dry heat or steamed with moist heat to “toast” the ground flakes. Heat treating the ground flakes in the presence of significant amounts of water is avoided to prevent denaturation of the soy protein in the material and to avoid costs involved in the addition and removal of water from the soy material.
The resulting ground, heat treated material is a soy flour, soy grit, or a soy meal, depending on the average particle size of the material. The soy flour, grit, or meal typically contains from about 45% to about 55% soy protein, by weight, and also contains substantial amounts of fiber. Conventional soy flours, grits, and meals also contain substantial amounts of oligosaccharides, including raffinose and stachyose, since no steps are taken to remove them.
Conventional soy flours, grits, and meals are used as functional food ingredients to increase viscosity, for fat absorption, for water absorption, and for their emulsification properties, in much the same applications as soy protein concentrates

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Functional food ingredient does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Functional food ingredient, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Functional food ingredient will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.