Optical: systems and elements – Compound lens system – Telescope
Reexamination Certificate
1999-10-26
2002-05-21
Spyrou, Cassandra (Department: 2872)
Optical: systems and elements
Compound lens system
Telescope
C359S429000
Reexamination Certificate
active
06392799
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to telescopes or other observation instruments and, more particularly, it relates to fully automated telescope systems with distributed intelligence and control systems for such telescopes.
SUMMARY OF THE INVENTION
The present invention relates to fully automatic telescope systems which are capable of performing alignment and orientation operations under program control with a minimum of intervention by a user. The telescope system is able to perform its alignment and orientation functions regardless of whether it might be configured as an alt-azimuth telescope or as an equitorial telescope. In accordance with the invention, the system is provided with sufficient processing power and with a multiplicity of application routines so that alignment and orientation is performed with regard to a large number of different algorithms and with respect to a variety of user definable data type inputs. All that is required is that some location index be provided to the system and that the system's motors are initialized to a horizontal and vertical referant. Time might be included as an input parameter, whether user provided, or by automatic extraction from a peripherally coupled device. Location indices as well as horizontal and vertical referants might be user provided, obtained under user direction, or automatically obtained from various other peripherally coupled devices.
The telescope system has a distributed intelligence in that its motor control functions are independently developed by motor modules including a microcontroller, operating on motor movement commands received from a hand held command module, in combination with position feedback information derived from optical encoders coupled to each motor shaft. Alternatively, the encoders might be coupled to each of a telescope's two generally orthogonal axes, and encoder feedback signals directed to the motor module microcontrollers.
Distributed intelligence is further characterized in that the telescope system hand held command module might be provided in two separate configurations. A first configuration is simplified, and only provides direction and speed commands to the intelligent motor modules. System intelligence thus resides in the motor modules with the command module functioning more as a steering wheel, or directional joy stick.
In a second configuration, the command module is a fully functional microprocessor controlled command unit, capable of executing high level application software routines and performing numerous data processing tasks, such as numerical calculations, coordinate system transformations, database manipulations, and managing the functional performance of various different peripherally coupled devices.
A central interface panel is provided on the telescope system and supports interconnection between and among the intelligent motor modules, the command module (of either form) and peripheral devices. Communication between and among the component parts is made over serial data and control communication channels in accordance with a packet based serial communication protocol. An RS-232 port is also provided such that a command module is able to communicate with ancillary RS-232 capable devices like personal computer systems and/or a command module belonging to another intelligent telescope system according to the invention.
Use of the various communication channels allows the telescope system according to the invention to communicate with other devices in order to exchange stored information, exchange created and stored operating routines, obtain updates to programs and/or internal databases and the like. In this regard, the telescope system includes a number of internal databases, including at least one database of the celestial coordinates (RA and DEC) of known celestial objects that might be of interest to an observer. Further, the system includes a database of the geographical coordinates (Latitude and Longitude) of a large body of geographical landmarks. These landmarks might include the known coordinates of cities and towns, cartographic features such as mountains, and might include the coordinates of any definable point on the earth's surface whose position is stable and geographically determinable. Each of the databases are user accessible such that additional entries, of particular interest to a user, might be included.
The solution to any given problem in celestial trigonometry depends on being able to convert measurements of obtained in one coordinate system (alt-az, for example) into a second coordinate system (the celestial coordinate system). The present invention relates to a system and method for orienting a computerized telescope system of the type including a telescope coupled for rotation about two orthogonal axes, with respect to a spherical coordinate system. The telescope is provided with a pair of motors, each motor coupled to rotate the telescope about a respective one of the orthogonal axes. Each motor further includes a positional reference indicator which defines an arcuate position of the telescope with respect to its corresponding axis. Positional reference information is taken from each positional reference indicator and provided to a control processor which is programmed to carry out the calculations necessary for effecting coordinate system transformation.
In a first line of procedure, the computerized telescope system is able to locate its own alignment stars based on date and time entries provided by a user during an initialization procedure. Specifically, the telescope is moved about one of its orthogonal axes until the telescope is pointed at a first positional reference. In one aspect of the invention, the first positional reference is North.
After the telescope system is pointed to the first positional reference, the arcuate position of that positional reference indicator is recorded and stored by the control processor so as to define a first reference position. Next, the telescope is moved about a second axis in order to position the telescope at a second reference point. In a particular aspect of the invention, the second reference point is the horizon, thus causing the telescope to be leveled. The arcuate position of the respective positional reference indicator is read and recorded to thereby define a second reference point.
Particularly, the positional reference indicators are position encoders of altitude and azimuth motor assemblies. Pointing the telescope North and leveling the telescope, functions to zero-in the position encoders of the altitude and azimuth motor assemblies. Any subsequent motion of the telescope away from its 0,0 position allows the telescope system to directly calculate its altitude and azimuth displacements from the 0,0 reference point.
Using time and date entries provided by a user, the telescope system consults a database of well known celestial objects and selects a particular bright object which is currently above the horizon. The entered time and date information allows the system to calculate whether that particular bright object has rotated sufficiently in right ascension to bring it above the observer's horizon, while a virtual latitude and longitude entry provided by an observer's entering a geographical indicia, provides the system with sufficient information regarding an observer's latitude such that it may calculate a declination value for the desired viewing object.
The system automatically slews the telescope to the vicinity of the desired viewing object by commanding the appropriate motion from the altitude and azimuth motors. Once the telescope has slewed to the vicinity of the desired star, the observer is prompted to center the star in the field of view of the telescope eyepiece. Once the star is centered in the field of view of the eyepiece, the system calculates the position and orientation of the telescope with respect to the night sky (the celestial sphere).
REFERENCES:
patent: 4682091 (1987-07-01), Krewalk et al.
patent: 4764881 (19
Baun Kenneth W.
Hoot John E.
Meade Instruments Corporation
Stradling Yocca Carlson & Rauth
LandOfFree
Fully automated telescope system with distributed intelligence does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fully automated telescope system with distributed intelligence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fully automated telescope system with distributed intelligence will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2863299