Frame buffer addressing scheme

Computer graphics processing and selective visual display system – Computer graphics display memory system – Plural storage devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S531000, C345S572000, C345S545000, C345S564000

Reexamination Certificate

active

06836272

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to the field of computer graphics and, more particularly, to generating frame buffer addresses.
2. Description of the Related Art
A computer system typically relies upon its graphics system for producing visual output on the computer screen or display device. Early graphics systems were only responsible for taking what the processor produced as output and displaying it on the screen. In essence, they acted as simple translators or interfaces. Modem graphics systems, however, incorporate graphics processors with a great deal of processing power. They now act more like coprocessors rather than simple translators. This change is due to the recent increase in both the complexity and amount of data being sent to the display device. For example, modem computer displays have many more pixels, greater color depth, and are able to display more complex images with higher refresh rates than earlier models. Similarly, the images displayed are now more complex and may involve advanced techniques such as anti-aliasing and texture mapping.
As a result, without considerable processing power in the graphics system, the CPU would spend a great deal of time performing graphics calculations. This could rob the computer system of the processing power needed for performing other tasks associated with program execution and thereby dramatically reduce overall system performance. With a powerful graphics system, however, when the CPU is instructed to draw a box on the screen, the CPU is freed from having to compute the position and color of each pixel. Instead, the CPU may send a request to the video card stating “draw a box at these coordinates.” The graphics system then draws the box, freeing the processor to perform other tasks.
Generally, a graphics system in a computer (also referred to as a graphics system) is a type of video adapter that contains its own processor to boost performance levels. These processors are specialized for computing graphical transformations, so they tend to achieve better results than the general-purpose CPU used by the computer system. In addition, they free up the computer's CPU to execute other commands while the graphics system is handling graphics computations. The popularity of graphical applications, and especially multimedia applications, has made high performance graphics systems a common feature of computer systems. Most computer manufacturers now bundle a high performance graphics system with their systems.
Since graphics systems typically perform only a limited set of functions, they may be customized and therefore far more efficient at graphics operations than the computer's general-purpose central processor. While early graphics systems were limited to performing two-dimensional (2D) graphics, their functionality has increased to support three-dimensional (3D) wire-frame graphics, 3D solids, and now includes support for three-dimensional (3D) graphics with textures and special effects such as advanced shading, fogging, alpha-blending, and specular highlighting.
A modern graphics system may generally operate as follows. First, graphics data is initially read from a computer system's main memory into the graphics system. The graphics data may include geometric primitives such as polygons (e.g., triangles), NURBS (Non-Uniform Rational B-Splines), sub-division surfaces, voxels (volume elements) and other types of data. The various types of data are typically converted into triangles (e.g., three vertices having at least position and color information). Then, transform and lighting calculation units receive and process the triangles. Transform calculations typically include changing a triangle's coordinate axis, while lighting calculations typically determine what effect, if any, lighting has on the color of triangle's vertices. The transformed and lit triangles may then be conveyed to a clip test/back face culling unit that determines which triangles are outside the current parameters for visibility (e.g., triangles that are off screen). These triangles are typically discarded to prevent additional system resources from being spent on non-visible triangles.
Next, the triangles that pass the clip test and back-face culling may be translated into screen space. The screen space triangles may then be forwarded to the set-up and draw processor for rasterization. Rasterization typically refers to the process of generating actual pixels (or samples) by interpolation from the vertices. The rendering process may include interpolating slopes of edges of the polygon or triangle, and then calculating pixels or samples on these edges based on these interpolated slopes. Pixels or samples may also be calculated in the interior of the polygon or triangle.
As noted above, in some cases samples are generated by the rasterization process instead of pixels. A pixel typically has a one-to-one correlation with the hardware pixels present in a display device, while samples are typically more numerous than the hardware pixel elements and need not have any direct correlation to the display device. Where pixels are generated, the pixels may be stored into a frame buffer, or possibly provided directly to refresh the display. Where samples are generated, the samples may be stored into a sample buffer or frame buffer. The samples may later be accessed and filtered to generate pixels, which may then be stored into a frame buffer, or the samples may possibly filtered to form pixels that are provided directly to refresh the display without any intervening frame buffer storage of the pixels.
The pixels are converted into an analog video signal by digital-to-analog converters. If samples are used, the samples may be read out of sample buffer or frame buffer and filtered to generate pixels, which may be stored and later conveyed to digital to analog converters. The video signal from converters is conveyed to a display device such as a computer monitor, LCD display, or projector.
In many graphics systems, it is desirable to improve the efficiency of accesses to the frame buffer so that rendering accesses and/or display device accesses may be performed more quickly.
SUMMARY OF THE INVENTION
Various embodiments of systems and methods of generating frame buffer addresses are disclosed. In one embodiment, a graphics system includes a frame buffer that includes one or more memory devices and a frame buffer interface coupled to the frame buffer. Each memory device in the frame buffer includes N banks. Each of the N banks includes multiple pages, and each page is configured to store data corresponding to a portion of a screen region. The frame buffer interface is configured to generate address used to store data corresponding to a frame of data (e.g., the data that specifies a screen to be displayed on a display device) in the frame buffer. The frame includes multiple screen regions. The frame buffer interface is configured to generate addresses corresponding to the data and to provide the addresses to the frame buffer. The addresses are generated such that each of the N banks stores data corresponding to a portion of one out of every N screen regions within a horizontal group of screen regions. Furthermore, the address are generated such that portions of horizontally neighboring screen regions are stored in different banks. For example, if a first screen region and a second screen region are horizontally neighboring screen regions, the addresses may be generated such that data corresponding to a portion of the first screen region is stored in a first one of the N banks and data corresponding to a portion of the second screen region is stored in a second one of the N banks.
In some embodiments, each screen region included in the frame may include more pixels in a horizontal direction than in a vertical direction. Each screen region included in the frame may be stored in a frame buffer page that is interleaved within the frame buffer. For example, each frame buffer page may include a page from

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Frame buffer addressing scheme does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Frame buffer addressing scheme, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Frame buffer addressing scheme will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3318018

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.