Fortified confectionery delivery systems and methods of...

Food or edible material: processes – compositions – and products – Product with added vitamin or derivative thereof for...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S073000, C426S074000, C426S660000

Reexamination Certificate

active

06673380

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to confectionery delivery systems for nutrients. A process for preparing nutritional confectionery products is also provided.
BACKGROUND
Vitamin and mineral supplements often provide fortification otherwise not present in regular dietary intake. The supplements may be delivered in a variety of known forms, such as by tablet, capsule, powders, edible food products and so on. Regardless of the number of delivery systems available, there is a continuing need to provide alternative forms of supplements that are appealing, and therefore increase the likelihood of compliance to those in need of ingesting such supplements. Confectionery based supplements are appealing because they provide good tasting delivery systems.
One of the problems associated with preparing acceptable delivery systems for minerals and vitamins, particularly confectionery delivery systems, is obtaining a product with an acceptable taste, stability, and texture. Undesirable organoleptic characteristics, such as pasty, dry, dusty, chalky, bitterness and aftertaste are problematic in delivery minerals and vitamins in an edible matrix, particularly a chewable matrix. For example, a common occurrence in preparing a calcium fortified confectionery is that the product tends to taste chalky or gritty. Additional challenges in preparing good tasting supplements is that the solubility or strong flavor of the vitamins and/or minerals make it difficult to sustain a good taste throughout the eating process.
Further, when fruit flavored chews are made, particularly those with citric acid, the confectionery products may have a strong acidic, sour flavor or aftertaste. Further still, when the fruit chew employs an acid component, the calcium used to fortify the chew may react with the acid component to form a gas thereby impairing undesirable characteristics for the end product confectionery or prematurely react during product manufacture.
Within the area of fortification, the relationship between certain vitamins and minerals and bone mineral content and associated bone loss, formation, and/or restoration continues to generate much interest. Providing a delivery system having an acceptable matrix to deliver vitamins and minerals specific to the area of bond content would be particularly desirable.
As used herein, weight percentages (wt. %) are based on the total weight of said confectionery composition.
SUMMARY OF INVENTION
The above-described problems and needs have been solved with the discovery of a chewy confectionery composition comprising from about 0.2 weight percent (wt. %) to about 45 wt. % of a fortifying component comprising a vitamin source, a mineral source, or a mixture thereof; from about 3 to about 18 wt. % of a fat; from about 40 wt. % to about 70 wt. % of a carbohydrate comprising at least one non-reducing sugar and at least one reducing sugar, wherein said reducing sugar:non-reducing sugar ratio ranges from about 1:0.2 to about 1:1. Also provided is a chewy confectionery comprising from about 0.2 wt. % to about 45 wt. % of a fortifying component, from about 3 to about 18 wt. % of a fat; from about 40 wt. % to about 70 wt. % of a carbohydrate comprising from about 10 to 50 wt. % of an oligosaccharide, a polysaccharide or a mixture thereof and from about 50 to about 90% of a monosaccharide, a disaccharide, or a combination thereof. The matrix of the confectionery composition provides a method of delivering vitamins and minerals in a manner that retains the desirable characteristics for a confectionery such as good taste, good texture, and substantially no aftertaste.
In a preferred embodiment, from about 2 to about 32 wt. % of a calcium is employed in the fortifying composition. In yet another preferred embodiment, the confectionery is prepared using an encapsulated citric acid that provides a fruit flavored chew. In addition to providing a composition capable of incorporating high percentages of a fortifying composition, also provided is a process improvement for the preparation of a confectionery composition incorporating calcium. In particular, said process comprises the steps of cooking a confectionery comprising from about 3 to about 18 wt. % of a fat; from about 40 wt. % to about 70 wt. % of a carbohydrate comprising at least one reducing sugar and at least one non-reducing sugar present in a ratio of reducing sugar:non-reducing sugar of from about 1:0.2 to about 1:1, and from about 0 to about 10 wt. % of a protein to form a precooked mass and thereafter adding to said precooked mass said fortifying component comprising from about 0.2 to about 45 wt. %. All weight percentages used herein are based on the total weight of the complete confectionery composition.
Advantages presented with the fortified confectionery include obtaining high levels of fortifying components in the confectionery without compromising taste and texture. The preferred products are soft without exhibiting stickiness and do not taste chalky or gritty.
DETAILED DESCRIPTION
As used herein, dextrose equivalent (DE) is defined as the percent of reducing sugars on a dry basis calculated as dextrose. As familiar to one skilled in the art, glucose (or corn) syrups are formed by reacting a starch with an acid and/or enzyme. The DE is a measurement of the degree of hydrolysis that starches undergo to yield different DE syrups. As used herein, glucose and dextrose are used interchangeably. Standard corn syrups are defined as having about a DE value of approximately 42. Syrup processed to have a “high” DE using has a value of approximately 65 DE. The higher the level of DE in a carbohydrate component, the sweeter the ingredient. With the sweetness factor, the high DE carbohydrates may also contribute to negative product characteristics, such as, greater tendency to crystallize (could lead to a product defect if there's too much or too big of a crystal formulation); less viscosity (could lead to a product that is too sticky, inability to bold form); tendency to brown (could lead to flavor problems and coloration problems); tendency to be more hygroscopic (could lead to product that has too much crystallization); and so on. A “reducing sugar” is defined as a sugar which can chemically react with a special copper reagent known as Fehlings solution (alkaline solution), whereby the “reducing” sugar will reduce this copper solution to copper oxide (cuprous oxide). A “non reducing sugar” is defined as a sugar that will not react with the special copper reagent. Sucrose is an example of a common non-reducing sugar. Corn syrups, fructose and milk sugars are examples of reducing sugars.
Typically, in caramels, toffees and other chewy confectionery products, the carbohydrates are 1 part reducing sugars and 1.2 to 1.4 parts non-reducing sugar (sucrose). Unexpectedly, in the present invention, the conventional ratio of carbohydrates does not work well because they provide a product that is too hard and grainy in texture. On the other hand, too high of a ratio of reducing sugar to non-reducing sugar will provide a confectionery having a texture that is too sticky and runny. Accordingly, large-scale manufacture of the fortified chew was found technically unfeasible.
The carbohydrates used in the invention may be selected from any source commonly used in the art of preparing confectionery products (see, e.g.
Food Technology,
March, 1991, pp. 148-149, hereby incorporated by reference). More particularly, the carbohydrate preferably has at least one reducing sugar and at least one non-reducing sugar. The carbohydrate preferred may also be defined as comprising from about 10 to 50 wt. % of an oligosaccharide, a polysaccharide or a mixture thereof and from about 50 to about 90% of a monosaccharide, a disaccharide, or a combination thereof. Sugars falling into the category of monosaccharide, disaccharide, etc. are readily ascertainable by one skilled in the art (see, e.g.
Food Technology
article cited herein). More preferably from 20 to 50 wt. %, most preferably from 22 to 36 wt. % of the carbohydrate is selec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fortified confectionery delivery systems and methods of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fortified confectionery delivery systems and methods of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fortified confectionery delivery systems and methods of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3247529

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.